BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12702454)

  • 1. Physiological behaviour of Hanseniaspora guilliermondii in aerobic glucose-limited continuous cultures.
    Albergaria H; Torrão AR; Hogg T; Gírio FM
    FEMS Yeast Res; 2003 Apr; 3(2):211-6. PubMed ID: 12702454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose metabolism, enzymic analysis and product formation in chemostat culture of Hanseniaspora uvarum.
    Venturin C; Boze H; Moulin G; Galzy P
    Yeast; 1995 Apr; 11(4):327-36. PubMed ID: 7785333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source.
    Fonseca GG; Gombert AK; Heinzle E; Wittmann C
    FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the yeast short-term Crabtree effect and its origin.
    Hagman A; Säll T; Piškur J
    FEBS J; 2014 Nov; 281(21):4805-14. PubMed ID: 25161062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of alcoholic fermentation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359.
    Kiers J; Zeeman AM; Luttik M; Thiele C; Castrillo JI; Steensma HY; van Dijken JP; Pronk JT
    Yeast; 1998 Mar; 14(5):459-69. PubMed ID: 9559553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolomics approach to reduce the Crabtree effect in continuous culture of Saccharomyces cerevisiae.
    Imura M; Iwakiri R; Bamba T; Fukusaki E
    J Biosci Bioeng; 2018 Aug; 126(2):183-188. PubMed ID: 29685822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth characteristics and oxidative capacity of Acetobacter aceti IFO 3281: implications for L-ribulose production.
    Kylmä AK; Granström T; Leisola M
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):584-91. PubMed ID: 12898066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae.
    Postma E; Verduyn C; Scheffers WA; Van Dijken JP
    Appl Environ Microbiol; 1989 Feb; 55(2):468-77. PubMed ID: 2566299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brettanomyces bruxellensis: effect of oxygen on growth and acetic acid production.
    Aguilar Uscanga MG; Délia ML; Strehaiano P
    Appl Microbiol Biotechnol; 2003 Apr; 61(2):157-62. PubMed ID: 12655458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fed-batch cultivation of Saccharomyces cerevisiae in a hyperbaric bioreactor.
    Belo I; Pinheiro R; Mota M
    Biotechnol Prog; 2003; 19(2):665-71. PubMed ID: 12675615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A physiological and enzymatic study of Debaryomyces hansenii growth on xylose- and oxygen-limited chemostats.
    Nobre A; Duarte LC; Roseiro JC; Gírio FM
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):509-16. PubMed ID: 12172618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process.
    Alfenore S; Cameleyre X; Benbadis L; Bideaux C; Uribelarrea JL; Goma G; Molina-Jouve C; Guillouet SE
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):537-42. PubMed ID: 12879304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further evidence for the existence of a bottleneck in the metabolism of Saccharomyces cerevisiae.
    Auberson LC; Ramseier CV; Marison IW; von Stockar U
    Experientia; 1989 Dec; 45(11-12):1013-8. PubMed ID: 2513218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of specific growth rate on fermentative capacity of baker's yeast.
    Van Hoek P; Van Dijken JP; Pronk JT
    Appl Environ Microbiol; 1998 Nov; 64(11):4226-33. PubMed ID: 9797269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotechnological utilization of biodiesel-derived glycerol for the production of ribonucleotides and microbial biomass.
    Rivaldi JD; Sarrouh BF; Branco Rde F; de Mancilha IM; da Silva SS
    Appl Biochem Biotechnol; 2012 Aug; 167(7):2054-67. PubMed ID: 22653682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the impact of magnetic fields on biomass production efficiency under aerobic and anaerobic batch fermentation of Saccharomyces cerevisiae.
    Sincak M; Turker M; Derman ÜC; Erdem A; Jandacka P; Luptak M; Luptakova A; Sedlakova-Kadukova J
    Sci Rep; 2024 Jun; 14(1):12869. PubMed ID: 38834614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic fluxes in chemostat cultures of Schizosaccharomyces pombe grown on mixtures of glucose and ethanol.
    de Jong-Gubbels P; van Dijken JP; Pronk JT
    Microbiology (Reading); 1996 Jun; 142 ( Pt 6)():1399-1407. PubMed ID: 8704980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerobic and anaerobic ethanol production by Mucor circinelloides during submerged growth.
    Lübbehüsen TL; Nielsen J; McIntyre M
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):543-8. PubMed ID: 12879305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insufficient uracil supply in fully aerobic chemostat cultures of Saccharomyces cerevisiae leads to respiro-fermentative metabolism and double nutrient-limitation.
    Basso TO; Dario MG; Tonso A; Stambuk BU; Gombert AK
    Biotechnol Lett; 2010 Jul; 32(7):973-7. PubMed ID: 20349336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.