BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 12702568)

  • 1. Firefly luciferin-activated rose bengal: in vitro photodynamic therapy by intracellular chemiluminescence in transgenic NIH 3T3 cells.
    Theodossiou T; Hothersall JS; Woods EA; Okkenhaug K; Jacobson J; MacRobert AJ
    Cancer Res; 2003 Apr; 63(8):1818-21. PubMed ID: 12702568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topical rose bengal: pre-clinical evaluation of pharmacokinetics and safety.
    Wachter E; Dees C; Harkins J; Scott T; Petersen M; Rush RE; Cada A
    Lasers Surg Med; 2003; 32(2):101-10. PubMed ID: 12561042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of photodynamic actions of rose bengal on cultured cells.
    Tseng SC; Feenstra RP; Watson BD
    Invest Ophthalmol Vis Sci; 1994 Jul; 35(8):3295-307. PubMed ID: 8045719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemiluminescence and Bioluminescence as an Excitation Source in the Photodynamic Therapy of Cancer: A Critical Review.
    Magalhães CM; Esteves da Silva JC; Pinto da Silva L
    Chemphyschem; 2016 Aug; 17(15):2286-94. PubMed ID: 27129132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term regression of the murine mammary adenocarcinoma, LM3, by repeated photodynamic treatments using meso-tetra (4-N-methylpyridinium) porphine.
    Colombo LL; Vanzulli SI; Villanueva A; Cañete M; Juarranz A; Stockert JC
    Int J Oncol; 2005 Oct; 27(4):1053-9. PubMed ID: 16142323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Schedule-dependent interaction between Doxorubicin and mTHPC-mediated photodynamic therapy in murine hepatoma in vitro and in vivo.
    Kirveliene V; Grazeliene G; Dabkeviciene D; Micke I; Kirvelis D; Juodka B; Didziapetriene J
    Cancer Chemother Pharmacol; 2006 Jan; 57(1):65-72. PubMed ID: 16001168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the efficacy of photodynamic cancer therapy by radicals from plant auxin (indole-3-acetic acid).
    Folkes LK; Wardman P
    Cancer Res; 2003 Feb; 63(4):776-9. PubMed ID: 12591725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bifunctional luminogenic substrate for two luminescent enzymes: firefly luciferase and horseradish peroxidase.
    Sudhaharan T; Reddy AR
    Anal Biochem; 1999 Jul; 271(2):159-67. PubMed ID: 10419631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of hand held photopolymerizer to photoinactivate Streptococcus mutans.
    Paulino TP; Ribeiro KF; Thedei G; Tedesco AC; Ciancaglini P
    Arch Oral Biol; 2005 Mar; 50(3):353-9. PubMed ID: 15740715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient rose bengal based nanoplatform for photodynamic therapy.
    Gianotti E; Martins Estevão B; Cucinotta F; Hioka N; Rizzi M; Renò F; Marchese L
    Chemistry; 2014 Aug; 20(35):10921-5. PubMed ID: 25116185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodynamic action of Rose Bengal silica nanoparticle complex on breast and oral cancer cell lines.
    Uppal A; Jain B; Gupta PK; Das K
    Photochem Photobiol; 2011; 87(5):1146-51. PubMed ID: 21749397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioluminescence imaging of the response of rat gliosarcoma to ALA-PpIX-mediated photodynamic therapy.
    Moriyama EH; Bisland SK; Lilge L; Wilson BC
    Photochem Photobiol; 2004; 80(2):242-9. PubMed ID: 15362932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of hypoxia on bioluminescence in luciferase-transfected gliosarcoma tumor cells in vitro.
    Moriyama EH; Niedre MJ; Jarvi MT; Mocanu JD; Moriyama Y; Subarsky P; Li B; Lilge LD; Wilson BC
    Photochem Photobiol Sci; 2008 Jun; 7(6):675-80. PubMed ID: 18528551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of glutathione on rose bengal photosensitized yeast damage.
    Lazarova G
    Microbios; 1993; 75(302):39-43. PubMed ID: 8377662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of firefly luciferase bioluminescence mediated photodynamic toxicity in cancer cells.
    Schipper ML; Patel MR; Gambhir SS
    Mol Imaging Biol; 2006; 8(4):218-25. PubMed ID: 16791748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-linking of signal transducer and activator of transcription 3--a molecular marker for the photodynamic reaction in cells and tumors.
    Henderson BW; Daroqui C; Tracy E; Vaughan LA; Loewen GM; Cooper MT; Baumann H
    Clin Cancer Res; 2007 Jun; 13(11):3156-63. PubMed ID: 17545518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemiluminescence as a PDT light source for microbial control.
    Ferraz RC; Fontana CR; Ribeiro AP; Trindade FZ; Bartoloni FH; Baader JW; Lins EC; Bagnato VS; Kurachi C
    J Photochem Photobiol B; 2011 May; 103(2):87-92. PubMed ID: 21349738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular ATP measured with luciferin/luciferase in isolated single mouse skeletal muscle fibres.
    Allen DG; Lännergren J; Westerblad H
    Pflugers Arch; 2002 Mar; 443(5-6):836-42. PubMed ID: 11889583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photodynamic therapy-induced apoptosis of HeLa cells.
    Panzarini E; Tenuzzo B; Dini L
    Ann N Y Acad Sci; 2009 Aug; 1171():617-26. PubMed ID: 19723112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen dependence of two-photon activation of zinc and copper phthalocyanine tetrasulfonate in Jurkat cells.
    Mir Y; van Lier JE; Paquette B; Houde D
    Photochem Photobiol; 2008; 84(5):1182-6. PubMed ID: 18331397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.