BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 12702708)

  • 1. Postnatal development of corticospinal postsynaptic action.
    Meng Z; Martin JH
    J Neurophysiol; 2003 Aug; 90(2):683-92. PubMed ID: 12702708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The corticospinal system: from development to motor control.
    Martin JH
    Neuroscientist; 2005 Apr; 11(2):161-73. PubMed ID: 15746384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of specificity in corticospinal connections by axon collaterals branching selectively into appropriate spinal targets.
    Kuang RZ; Kalil K
    J Comp Neurol; 1994 Jun; 344(2):270-82. PubMed ID: 8077461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological basis of motor effects of a transient stimulus to cerebral cortex.
    Amassian VE; Stewart M; Quirk GJ; Rosenthal JL
    Neurosurgery; 1987 Jan; 20(1):74-93. PubMed ID: 3543727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal cord plasticity in response to unilateral inhibition of the rat motor cortex during development: changes to gene expression, muscle afferents and the ipsilateral corticospinal projection.
    Clowry GJ; Davies BM; Upile NS; Gibson CL; Bradley PM
    Eur J Neurosci; 2004 Nov; 20(10):2555-66. PubMed ID: 15548199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synapse elimination in the corticospinal projection during the early postnatal period.
    Kamiyama T; Yoshioka N; Sakurai M
    J Neurophysiol; 2006 Apr; 95(4):2304-13. PubMed ID: 16267122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postnatal development of differential projections from the caudal and rostral motor cortex subregions.
    Li Q; Martin JH
    Exp Brain Res; 2000 Sep; 134(2):187-98. PubMed ID: 11037285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The pyramidal tract. Recent anatomic and physiologic findings].
    Armand J
    Rev Neurol (Paris); 1984; 140(5):309-29. PubMed ID: 6379818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats.
    Liang P; Jin LH; Liang T; Liu EZ; Zhao SG
    Chin Med J (Engl); 2006 Aug; 119(16):1331-8. PubMed ID: 16934177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical period for activity-dependent elimination of corticospinal synapses in vitro.
    Ohno T; Sakurai M
    Neuroscience; 2005; 132(4):917-22. PubMed ID: 15857697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rescuing transient corticospinal terminations and promoting growth with corticospinal stimulation in kittens.
    Salimi I; Martin JH
    J Neurosci; 2004 May; 24(21):4952-61. PubMed ID: 15163687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-lasting facilitation of pyramidal tract input to spinal interneurons.
    Iriki A; Keller A; Pavlides C; Asanuma H
    Neuroreport; 1990 Oct; 1(2):157-60. PubMed ID: 2129871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical and electrophysiological recordings of corticospinal synaptic activity and its developmental change in in vitro rat slice co-cultures.
    Maeda H; Ohno T; Sakurai M
    Neuroscience; 2007 Dec; 150(4):829-40. PubMed ID: 18022322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regenerating motor bridge axons refine connections and synapse on lumbar motoneurons to bypass chronic spinal cord injury.
    Campos LW; Chakrabarty S; Haque R; Martin JH
    J Comp Neurol; 2008 Feb; 506(5):838-50. PubMed ID: 18076081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-development of proprioceptive afferents and the corticospinal tract within the cervical spinal cord.
    Chakrabarty S; Martin JH
    Eur J Neurosci; 2011 Sep; 34(5):682-94. PubMed ID: 21896059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity- and use-dependent plasticity of the developing corticospinal system.
    Martin JH; Friel KM; Salimi I; Chakrabarty S
    Neurosci Biobehav Rev; 2007; 31(8):1125-35. PubMed ID: 17599407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of propriospinal neurons in the C3-C4 segments mediating disynaptic pyramidal excitation to forelimb motoneurons in the macaque monkey.
    Isa T; Ohki Y; Seki K; Alstermark B
    J Neurophysiol; 2006 Jun; 95(6):3674-85. PubMed ID: 16495365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bilateral corticospinal projections arise from each motor cortex in the macaque monkey: a quantitative study.
    Lacroix S; Havton LA; McKay H; Yang H; Brant A; Roberts J; Tuszynski MH
    J Comp Neurol; 2004 May; 473(2):147-61. PubMed ID: 15101086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of activation of corticospinal neurons and spinal motor neurons by magnetic and electrical transcranial stimulation in the lumbosacral cord of the anaesthetized monkey.
    Edgley SA; Eyre JA; Lemon RN; Miller S
    Brain; 1997 May; 120 ( Pt 5)():839-53. PubMed ID: 9183254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraspinal microstimulation excites multisegmental sensory afferents at lower stimulus levels than local alpha-motoneuron responses.
    Gaunt RA; Prochazka A; Mushahwar VK; Guevremont L; Ellaway PH
    J Neurophysiol; 2006 Dec; 96(6):2995-3005. PubMed ID: 16943320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.