BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 12702726)

  • 21. Identification of an amino-terminal substrate-binding domain in the Yersinia tyrosine phosphatase that is required for efficient recognition of focal adhesion targets.
    Black DS; Montagna LG; Zitsmann S; Bliska JB
    Mol Microbiol; 1998 Sep; 29(5):1263-74. PubMed ID: 9767593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CD22 associates with protein tyrosine phosphatase 1C, Syk, and phospholipase C-gamma(1) upon B cell activation.
    Law CL; Sidorenko SP; Chandran KA; Zhao Z; Shen SH; Fischer EH; Clark EA
    J Exp Med; 1996 Feb; 183(2):547-60. PubMed ID: 8627166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular cloning and characterization of a tyrosine phosphatase from Monosiga brevicollis.
    Zhao BF; Zhao ZJ
    Biochem Biophys Res Commun; 2014 Oct; 453(4):761-6. PubMed ID: 25445586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two splice variants of a tyrosine phosphatase differ in substrate specificity, DNA binding, and subcellular location.
    Kamatkar S; Radha V; Nambirajan S; Reddy RS; Swarup G
    J Biol Chem; 1996 Oct; 271(43):26755-61. PubMed ID: 8900155
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif.
    Pulido R; Zúñiga A; Ullrich A
    EMBO J; 1998 Dec; 17(24):7337-50. PubMed ID: 9857190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the receptor protein tyrosine phosphatase gene product PTP gamma: binding and activation by triphosphorylated nucleosides.
    Sorio C; Mendrola J; Lou Z; LaForgia S; Croce CM; Huebner K
    Cancer Res; 1995 Nov; 55(21):4855-64. PubMed ID: 7585520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SH2 domain-mediated interaction of inhibitory protein tyrosine kinase Csk with protein tyrosine phosphatase-HSCF.
    Wang B; Lemay S; Tsai S; Veillette A
    Mol Cell Biol; 2001 Feb; 21(4):1077-88. PubMed ID: 11158295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanistic studies on full length and the catalytic domain of the tandem SH2 domain-containing protein tyrosine phosphatase: analysis of phosphoenzyme levels and Vmax stimulatory effects of glycerol and of a phosphotyrosyl peptide ligand.
    Wang J; Walsh CT
    Biochemistry; 1997 Mar; 36(10):2993-9. PubMed ID: 9062130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subcellular localization of intracellular protein tyrosine phosphatases in T cells.
    Gjörloff-Wingren A; Saxena M; Han S; Wang X; Alonso A; Renedo M; Oh P; Williams S; Schnitzer J; Mustelin T
    Eur J Immunol; 2000 Aug; 30(8):2412-21. PubMed ID: 10940933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding of phosphatidic acid to the protein-tyrosine phosphatase SHP-1 as a basis for activity modulation.
    Frank C; Keilhack H; Opitz F; Zschörnig O; Böhmer FD
    Biochemistry; 1999 Sep; 38(37):11993-2002. PubMed ID: 10508402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction of smooth muscle myosin phosphatase with phospholipids.
    Ito M; Feng J; Tsujino S; Inagaki N; Inagaki M; Tanaka J; Ichikawa K; Hartshorne DJ; Nakano T
    Biochemistry; 1997 Jun; 36(24):7607-14. PubMed ID: 9200713
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure of the hematopoietic tyrosine phosphatase (HePTP) catalytic domain: structure of a KIM phosphatase with phosphate bound at the active site.
    Mustelin T; Tautz L; Page R
    J Mol Biol; 2005 Nov; 354(1):150-63. PubMed ID: 16226275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification and characterization of the human protein tyrosine phosphatase, PTP mu, from a baculovirus expression system.
    Brady-Kalnay SM; Tonks NK
    Mol Cell Biochem; 1993 Nov; 127-128():131-41. PubMed ID: 7935345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein Tyrosine Phosphatases as Potential Regulators of STAT3 Signaling.
    Kim M; Morales LD; Jang IS; Cho YY; Kim DJ
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30208623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of SOV-induced phosphatase inhibition and expression of protein tyrosine phosphatases in rat corneal endothelial cells.
    Chen WL; Harris DL; Joyce NC
    Exp Eye Res; 2005 Nov; 81(5):570-80. PubMed ID: 15950220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular cloning and expression of a unique rabbit osteoclastic phosphotyrosyl phosphatase.
    Wu LW; Baylink DJ; Lau KH
    Biochem J; 1996 Jun; 316 ( Pt 2)(Pt 2):515-23. PubMed ID: 8687395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression, Purification, and Kinetic Analysis of PTP Domains.
    Mentel M; Badea RA; Necula-Petrareanu G; Mallikarjuna ST; Ionescu AE; Szedlacsek SE
    Methods Mol Biol; 2016; 1447():39-66. PubMed ID: 27514799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel regulatory mechanism of MAP kinases activation and nuclear translocation mediated by PKA and the PTP-SL tyrosine phosphatase.
    Blanco-Aparicio C; Torres J; Pulido R
    J Cell Biol; 1999 Dec; 147(6):1129-36. PubMed ID: 10601328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potent inhibition of protein tyrosine phosphatases by copper complexes with multi-benzimidazole derivatives.
    Li Y; Lu L; Zhu M; Wang Q; Yuan C; Xing S; Fu X; Mei Y
    Biometals; 2011 Dec; 24(6):993-1004. PubMed ID: 21618062
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dinuclear copper complexes of organic claw: potent inhibition of protein tyrosine phosphatases.
    Ma L; Lu L; Zhu M; Wang Q; Gao F; Yuan C; Wu Y; Xing S; Fu X; Mei Y; Gao X
    J Inorg Biochem; 2011 Sep; 105(9):1138-47. PubMed ID: 21708098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.