These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 12702767)
1. The riboswitch-mediated control of sulfur metabolism in bacteria. Epshtein V; Mironov AS; Nudler E Proc Natl Acad Sci U S A; 2003 Apr; 100(9):5052-6. PubMed ID: 12702767 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional control of the sulfur-regulated cysH operon, containing genes involved in L-cysteine biosynthesis in Bacillus subtilis. Mansilla MC; Albanesi D; de Mendoza D J Bacteriol; 2000 Oct; 182(20):5885-92. PubMed ID: 11004190 [TBL] [Abstract][Full Text] [Related]
3. Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. McDaniel BA; Grundy FJ; Artsimovitch I; Henkin TM Proc Natl Acad Sci U S A; 2003 Mar; 100(6):3083-8. PubMed ID: 12626738 [TBL] [Abstract][Full Text] [Related]
4. Natural variability in S-adenosylmethionine (SAM)-dependent riboswitches: S-box elements in bacillus subtilis exhibit differential sensitivity to SAM In vivo and in vitro. Tomsic J; McDaniel BA; Grundy FJ; Henkin TM J Bacteriol; 2008 Feb; 190(3):823-33. PubMed ID: 18039762 [TBL] [Abstract][Full Text] [Related]
5. S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum. André G; Even S; Putzer H; Burguière P; Croux C; Danchin A; Martin-Verstraete I; Soutourina O Nucleic Acids Res; 2008 Oct; 36(18):5955-69. PubMed ID: 18812398 [TBL] [Abstract][Full Text] [Related]
6. The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in gram-positive bacteria. Grundy FJ; Henkin TM Mol Microbiol; 1998 Nov; 30(4):737-49. PubMed ID: 10094622 [TBL] [Abstract][Full Text] [Related]
7. Methionine biosynthesis in Staphylococcus aureus is tightly controlled by a hierarchical network involving an initiator tRNA-specific T-box riboswitch. Schoenfelder SM; Marincola G; Geiger T; Goerke C; Wolz C; Ziebuhr W PLoS Pathog; 2013 Sep; 9(9):e1003606. PubMed ID: 24068926 [TBL] [Abstract][Full Text] [Related]
8. New insights into regulation of the tryptophan biosynthetic operon in Gram-positive bacteria. Gutierrez-Preciado A; Jensen RA; Yanofsky C; Merino E Trends Genet; 2005 Aug; 21(8):432-6. PubMed ID: 15953653 [TBL] [Abstract][Full Text] [Related]
9. The riboswitch control of bacterial metabolism. Nudler E; Mironov AS Trends Biochem Sci; 2004 Jan; 29(1):11-7. PubMed ID: 14729327 [TBL] [Abstract][Full Text] [Related]
10. Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors. Stamatopoulou V; Apostolidi M; Li S; Lamprinou K; Papakyriakou A; Zhang J; Stathopoulos C Nucleic Acids Res; 2017 Sep; 45(17):10242-10258. PubMed ID: 28973457 [TBL] [Abstract][Full Text] [Related]
11. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Wickiser JK; Winkler WC; Breaker RR; Crothers DM Mol Cell; 2005 Apr; 18(1):49-60. PubMed ID: 15808508 [TBL] [Abstract][Full Text] [Related]
12. Another layer of complexity in Staphylococcus aureus methionine biosynthesis control: unusual RNase III-driven T-box riboswitch cleavage determines met operon mRNA stability and decay. Wencker FDR; Marincola G; Schoenfelder SMK; Maaß S; Becher D; Ziebuhr W Nucleic Acids Res; 2021 Feb; 49(4):2192-2212. PubMed ID: 33450025 [TBL] [Abstract][Full Text] [Related]
13. The T box and S box transcription termination control systems. Grundy FJ; Henkin TM Front Biosci; 2003 Jan; 8():d20-31. PubMed ID: 12456320 [TBL] [Abstract][Full Text] [Related]
14. Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. Corbino KA; Barrick JE; Lim J; Welz R; Tucker BJ; Puskarz I; Mandal M; Rudnick ND; Breaker RR Genome Biol; 2005; 6(8):R70. PubMed ID: 16086852 [TBL] [Abstract][Full Text] [Related]
15. Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? Rodionov DA; Vitreschak AG; Mironov AA; Gelfand MS Nucleic Acids Res; 2003 Dec; 31(23):6748-57. PubMed ID: 14627808 [TBL] [Abstract][Full Text] [Related]
17. Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. Rodionov DA; Vitreschak AG; Mironov AA; Gelfand MS Nucleic Acids Res; 2004; 32(11):3340-53. PubMed ID: 15215334 [TBL] [Abstract][Full Text] [Related]
18. Catabolite repression in the gram-positive bacteria: generation of negative regulators of transcription. Stewart GC J Cell Biochem; 1993 Jan; 51(1):25-8. PubMed ID: 8432740 [TBL] [Abstract][Full Text] [Related]
19. Ribosomal protein L20 controls expression of the Bacillus subtilis infC operon via a transcription attenuation mechanism. Choonee N; Even S; Zig L; Putzer H Nucleic Acids Res; 2007; 35(5):1578-88. PubMed ID: 17289755 [TBL] [Abstract][Full Text] [Related]
20. Conservation of a transcription antitermination mechanism in aminoacyl-tRNA synthetase and amino acid biosynthesis genes in gram-positive bacteria. Grundy FJ; Henkin TM J Mol Biol; 1994 Jan; 235(2):798-804. PubMed ID: 8289305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]