These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 12703696)
1. Investigation of the vibrational modes of edge-constrained fibrous samples placed in a standing wave tube. Song BH; Bolton JS J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):1833-49. PubMed ID: 12703696 [TBL] [Abstract][Full Text] [Related]
2. Measurement of characteristic impedance and wave number of porous material using pulse-tube and transfer-matrix methods. Sun L; Hou H; Dong LY; Wan FR J Acoust Soc Am; 2009 Dec; 126(6):3049-56. PubMed ID: 20000918 [TBL] [Abstract][Full Text] [Related]
3. A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials. Song BH; Bolton JS J Acoust Soc Am; 2000 Mar; 107(3):1131-52. PubMed ID: 10738770 [TBL] [Abstract][Full Text] [Related]
4. A standing wave linear ultrasonic motor operating in in-plane expanding and bending modes. Chen Z; Li X; Ci P; Liu G; Dong S Rev Sci Instrum; 2015 Mar; 86(3):035002. PubMed ID: 25832267 [TBL] [Abstract][Full Text] [Related]
5. Behavioral criterion quantifying the edge-constrained effects on foams in the standing wave tube. Pilon D; Panneton R; Sgard F J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):1980-7. PubMed ID: 14587598 [TBL] [Abstract][Full Text] [Related]
6. A study on the energy and the reflection angle of the sound reflected by a porous material. Dragonetti R; Napolitano M; Romano RA J Acoust Soc Am; 2019 Jan; 145(1):489. PubMed ID: 30710957 [TBL] [Abstract][Full Text] [Related]
7. An extended transfer matrix method for measuring acoustical properties of porous materials beyond the cut-off frequency. Chen L; Du L; Wang X; Sun X J Acoust Soc Am; 2020 Dec; 148(6):3772. PubMed ID: 33379928 [TBL] [Abstract][Full Text] [Related]
8. Sound wave propagation on the human skull surface with bone conduction stimulation. Dobrev I; Sim JH; Stenfelt S; Ihrle S; Gerig R; Pfiffner F; Eiber A; Huber AM; Röösli C Hear Res; 2017 Nov; 355():1-13. PubMed ID: 28964568 [TBL] [Abstract][Full Text] [Related]
9. Fiber-coupled self-mixing diode-laser Doppler velocimeter: technical aspects and flow velocity profile disturbances in water and blood flows. Koelink MH; de Mul FF; Weijers AL; Greve J; Graaff R; Dassel AC; Aarnoudse JG Appl Opt; 1994 Aug; 33(24):5628-41. PubMed ID: 20935962 [TBL] [Abstract][Full Text] [Related]
10. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers. Ottink M; Brunskog J; Jeong CH; Fernandez-Grande E; Trojgaard P; Tiana-Roig E J Acoust Soc Am; 2016 Jan; 139(1):41-52. PubMed ID: 26827003 [TBL] [Abstract][Full Text] [Related]
11. An axisymmetric poroelastic finite element formulation. Kang YJ; Gardner BK; Bolton JS J Acoust Soc Am; 1999 Aug; 106(2):565-74. PubMed ID: 10462787 [TBL] [Abstract][Full Text] [Related]
12. On-chip ultrasonic manipulation of microparticles by using the flexural vibration of a glass substrate. Yamamoto R; Koyama D; Matsukawa M Ultrasonics; 2017 Aug; 79():81-86. PubMed ID: 28453970 [TBL] [Abstract][Full Text] [Related]
13. Non-contact acoustic trapping in circular cross-section glass capillaries: a numerical study. Gralinski I; Alan T; Neild A J Acoust Soc Am; 2012 Nov; 132(5):2978-87. PubMed ID: 23145585 [TBL] [Abstract][Full Text] [Related]
14. Generation of extremely nonlinear standing-wave field using loudspeaker-driven dissonant tube. Min Q J Acoust Soc Am; 2018 Mar; 143(3):1472. PubMed ID: 29604680 [TBL] [Abstract][Full Text] [Related]
15. Noncontact ultrasonic transportation of small objects over long distances in air using a bending vibrator and a reflector. Koyama D; Nakamura K IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1152-9. PubMed ID: 20442026 [TBL] [Abstract][Full Text] [Related]
16. Investigation of the phase velocities of guided acoustic waves in soft porous layers. Boeckx L; Leclaire P; Khurana P; Glorieux C; Lauriks W; Allard JF J Acoust Soc Am; 2005 Feb; 117(2):545-54. PubMed ID: 15759676 [TBL] [Abstract][Full Text] [Related]
17. Application of orthogonality-relation for the separation of Lamb modes at a plate edge: numerical and experimental predictions. Ratassepp M; Klauson A; Chati F; Léon F; Décultot D; Maze G; Fritzsche M Ultrasonics; 2015 Mar; 57():90-5. PubMed ID: 25465106 [TBL] [Abstract][Full Text] [Related]
18. Wave mode extraction from multimodal wave signals in an orthotropic composite plate. Ratassepp M; Fan Z; Lasn K Ultrasonics; 2016 Sep; 71():223-230. PubMed ID: 27403641 [TBL] [Abstract][Full Text] [Related]
19. Spatial distribution of spin-wave modes in cylindrical nanowires of finite aspect ratio. Dolocan VO J Phys Condens Matter; 2011 Nov; 23(44):446005. PubMed ID: 22012736 [TBL] [Abstract][Full Text] [Related]
20. Modal characteristics of in-plane vibration of circular plates clamped at the outer edge. Farag NH; Pan J J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):1935-46. PubMed ID: 12703705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]