These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12703698)

  • 1. Modeling of finite amplitude acoustic waves in closed cavities using the Galerkin method.
    Erickson RR; Zinn BT
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):1863-70. PubMed ID: 12703698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear standing waves in 2-D acoustic resonators.
    Cervenka M; Bednarik M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e773-6. PubMed ID: 16780910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear and nonlinear ultrasound simulations using the discontinuous Galerkin method.
    Kelly JF; Marras S; Zhao X; McGough RJ
    J Acoust Soc Am; 2018 Apr; 143(4):2438. PubMed ID: 29716249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knudsen number effects on the nonlinear acoustic spectral energy cascade.
    Thirani S; Gupta P; Scalo C
    Phys Rev E; 2020 Feb; 101(2-1):023101. PubMed ID: 32168670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of shock-free pressure waves in shaped resonators by boundary driving.
    Luo C; Huang XY; Nguyen NT
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2515-21. PubMed ID: 17550150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weak nonlinear propagation of sound in a finite exponential horn.
    Béquin P; Morfey CL
    J Acoust Soc Am; 2001 Jun; 109(6):2649-59. PubMed ID: 11425107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discontinuous Galerkin finite element method for solving population density functions of cortical pyramidal and thalamic neuronal populations.
    Huang CH; Lin CC; Ju MS
    Comput Biol Med; 2015 Feb; 57():150-8. PubMed ID: 25557200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A two-frequency acoustic technique for bubble resonant oscillation studies.
    Ohsaka K; Trinh EH
    J Acoust Soc Am; 2000 Mar; 107(3):1346-51. PubMed ID: 10738788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency response of nonlinear oscillations of air column in a tube with an array of Helmholtz resonators.
    Sugimoto N; Masuda M; Hashiguchi T
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):1772-84. PubMed ID: 14587579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized translation of microbubbles driven by acoustic fields.
    Toilliez JO; Szeri AJ
    J Acoust Soc Am; 2008 Apr; 123(4):1916-30. PubMed ID: 18397000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic and aerodynamic forced vibrations of a thin flexible electrode: Quasi-periodic vs. chaotic oscillations.
    Madanu SB; Barbel SI; Ward T
    Chaos; 2016 Jun; 26(6):063113. PubMed ID: 27368778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance tongues and patterns in periodically forced reaction-diffusion systems.
    Lin AL; Hagberg A; Meron E; Swinney HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066217. PubMed ID: 15244718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite-amplitude acoustic responses of large-amplitude vibration objects with complex geometries in an infinite fluid.
    Xie F; Qu Y; Meng G
    J Acoust Soc Am; 2022 Jan; 151(1):529. PubMed ID: 35105051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonant properties of a nonlinear dissipative layer excited by a vibrating boundary: Q-factor and frequency response.
    Enflo BO; Hedberg CM; Rudenko OV
    J Acoust Soc Am; 2005 Feb; 117(2):601-12. PubMed ID: 15759681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plane nonlinear shear waves in relaxing media.
    Cormack JM; Hamilton MF
    J Acoust Soc Am; 2018 Feb; 143(2):1035. PubMed ID: 29495732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monostable Dynamic Analysis of Microbeam-Based Resonators via an Improved One Degree of Freedom Model.
    Li L; Zhang Q; Wang W; Han J
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wave envelopes method for description of nonlinear acoustic wave propagation.
    Wójcik J; Nowicki A; Lewin PA; Bloomfield PE; Kujawska T; Filipczyński L
    Ultrasonics; 2006 Jul; 44(3):310-29. PubMed ID: 16780911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiphase patterns in periodically forced oscillatory systems.
    Elphick C; Hagberg A; Meron E
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):5285-91. PubMed ID: 11969488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of nanoparticle transport in airways using Petrov-Galerkin finite element methods.
    Rajaraman P; Heys JJ
    Int J Numer Method Biomed Eng; 2014 Jan; 30(1):103-16. PubMed ID: 23982945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perturbations From Ducts on the Modes of Acoustic Thermometers.
    Gillis KA; Lin H; Moldover MR
    J Res Natl Inst Stand Technol; 2009; 114(5):263-85. PubMed ID: 27504227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.