These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 12703702)

  • 21. Radial vibration characteristics of spherical piezoelectric transducers.
    Kim JO; Lee JG; Chun HY
    Ultrasonics; 2005 Jun; 43(7):531-7. PubMed ID: 15950027
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An approximated 3-D model of cylinder-shaped piezoceramic elements for transducer design.
    Iula A; Lamberti N; Pappalardo M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(4):1056-64. PubMed ID: 18244260
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Velocity slip on curved surfaces.
    Chen W; Zhang R; Koplik J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023005. PubMed ID: 25353569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electromagnetic wave scattering by highly elongated and geometrically composite objects of large size parameters: the generalized multipole technique.
    Al-Rizzo HM; Tranquilla JM
    Appl Opt; 1995 Jun; 34(18):3502-21. PubMed ID: 21052166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Power dissipation and temperature distribution in piezoelectric ceramic slabs.
    Thomas D; Ebenezer DD; Srinivasan SM
    J Acoust Soc Am; 2010 Oct; 128(4):1700-11. PubMed ID: 20968343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An analytical solution for curved piezoelectric micromachined ultrasonic transducers with spherically shaped diaphragms.
    Sammoura F; Akhbari S; Lin L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Sep; 61(9):1533-44. PubMed ID: 25167153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Study on the radial composite piezoelectric ceramic transducer in radial vibration.
    Lin S
    Ultrasonics; 2007 Mar; 46(1):51-9. PubMed ID: 17166538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electroosmotic velocity and electric conductivity in a fibrous porous medium in the transverse direction.
    Keh HJ; Wu YY
    J Phys Chem B; 2011 Jul; 115(29):9168-78. PubMed ID: 21671618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of electrical boundary conditions on profiles of acoustic field and electric potential of shear-horizontal acoustic waves in potassium niobate plates.
    Kuznetsova IE; Nedospasov IA; Kolesov VV; Qian Z; Wang B; Zhu F
    Ultrasonics; 2018 May; 86():6-13. PubMed ID: 29407280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of a Cascaded Piezoelectric Ultrasonic Transducer with Three Sets of Piezoelectric Ceramic Stacks.
    Meng X; Lin S
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30704087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cable theory for finite length dendritic cylinders with initial and boundary conditions.
    Norman RS
    Biophys J; 1972 Jan; 12(1):25-45. PubMed ID: 5007242
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Boundary integral equations from Hamilton's principle for surface acoustic waves under periodic metal gratings.
    Abe H; Sato T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1601-3. PubMed ID: 18238706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of complex coefficients of radially polarized piezoelectric ceramic cylindrical shells using thin shell theory.
    Ebenezer DD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Oct; 51(10):1209-15. PubMed ID: 15553503
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A generalized finite difference method for modeling cardiac electrical activation on arbitrary, irregular computational meshes.
    Trew ML; Smaill BH; Bullivant DP; Hunter PJ; Pullan AJ
    Math Biosci; 2005 Dec; 198(2):169-89. PubMed ID: 16140344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vibration analysis of coupled conical-cylindrical-spherical shells using a Fourier spectral element method.
    Su Z; Jin G
    J Acoust Soc Am; 2016 Nov; 140(5):3925. PubMed ID: 27908089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental measurements and finite element analysis of the coupled vibrational characteristics of piezoelectric shells.
    Huang YH; Ma CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):785-98. PubMed ID: 22547289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acoustic analysis of a rectangular cavity with general impedance boundary conditions.
    Du JT; Li WL; Liu ZG; Xu HA; Ji ZL
    J Acoust Soc Am; 2011 Aug; 130(2):807-17. PubMed ID: 21877796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sound field separating on arbitrary surfaces enclosing a sound scatterer based on combined integral equations.
    Fan Z; Mei D; Yang K; Chen Z
    Ultrasonics; 2014 Dec; 54(8):2169-77. PubMed ID: 24998120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multireflection boundary conditions for lattice Boltzmann models.
    Ginzburg I; d'Humières D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066614. PubMed ID: 14754343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions.
    Shi Z; Yao X; Pang F; Wang Q
    Sci Rep; 2017 Oct; 7(1):12909. PubMed ID: 29018211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.