These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 12703702)
61. Electrical Potential Distribution for Multiple Charged Surfaces under a General Boundary Condition. Hsu JP; Tseng MT J Colloid Interface Sci; 1996 Dec; 184(1):289-300. PubMed ID: 8954665 [TBL] [Abstract][Full Text] [Related]
62. A block diagram model of the thickness mode piezoelectric transducer containing dual oppositely polarized piezoelectric zones. Estanbouli Y; Hayward G; Ramadas SN; Barbenel JC IEEE Trans Ultrason Ferroelectr Freq Control; 2006 May; 53(5):1028-36. PubMed ID: 16764456 [TBL] [Abstract][Full Text] [Related]
63. Dynamic characteristics of an axially polarized multilayer piezoelectric/elastic composite cylindrical transducer. Wang J; Shi Z IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Oct; 60(10):2196-203. PubMed ID: 24081268 [TBL] [Abstract][Full Text] [Related]
64. A mixed finite element method for acoustic wave propagation in moving fluids based on an Eulerian-Lagrangian description. Treyssède F; Gabard G; Ben Tahar M J Acoust Soc Am; 2003 Feb; 113(2):705-16. PubMed ID: 12597165 [TBL] [Abstract][Full Text] [Related]
65. Lattice Boltzmann models based on the vielbein formalism for the simulation of flows in curvilinear geometries. Busuioc S; Ambruş VE Phys Rev E; 2019 Mar; 99(3-1):033304. PubMed ID: 30999405 [TBL] [Abstract][Full Text] [Related]
66. Modeling of composite piezoelectric structures with the finite volume method. Bolborici V; Dawson FP; Pugh MC IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):156-62. PubMed ID: 22293746 [TBL] [Abstract][Full Text] [Related]
67. Vibration of piezoelectric elements surrounded by fluid media. Kamath H; Willatzen M; Melnik RV Ultrasonics; 2006 Jan; 44(1):64-72. PubMed ID: 16213539 [TBL] [Abstract][Full Text] [Related]
68. Metric mechanics with nontrivial topology: Actuating irises, cylinders, and evertors. Duffy D; Javed M; Abdelrahman MK; Ware TH; Warner M; Biggins JS Phys Rev E; 2021 Dec; 104(6-2):065004. PubMed ID: 35030939 [TBL] [Abstract][Full Text] [Related]
69. Coupled vibration analysis of the thin-walled cylindrical piezoelectric ceramic transducers. Aronov B J Acoust Soc Am; 2009 Feb; 125(2):803-18. PubMed ID: 19206858 [TBL] [Abstract][Full Text] [Related]
70. A circular cylindrical, radially polarized ceramic shell piezoelectric transformer. Chen W; Lü C; Yang J; Wang J IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jun; 56(6):1238-45. PubMed ID: 19574131 [TBL] [Abstract][Full Text] [Related]
71. Phase-field boundary conditions for the voxel finite cell method: Surface-free stress analysis of CT-based bone structures. Nguyen L; Stoter S; Baum T; Kirschke J; Ruess M; Yosibash Z; Schillinger D Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28294574 [TBL] [Abstract][Full Text] [Related]
72. Wildebeest herds on rolling hills: Flocking on arbitrary curved surfaces. Hueschen CL; Dunn AR; Phillips R Phys Rev E; 2023 Aug; 108(2-1):024610. PubMed ID: 37723815 [TBL] [Abstract][Full Text] [Related]
73. Rigorous speckle simulation using surface integral equations and higher order boundary element method. Fu L; Frenner K; Osten W Opt Lett; 2014 Jul; 39(14):4104-7. PubMed ID: 25121662 [TBL] [Abstract][Full Text] [Related]
74. Parametric Shape Optimization of Lens-Focused Piezoelectric Ultrasound Transducers. Thomas GPL; Chapelon JY; Bera JC; Lafon C IEEE Trans Ultrason Ferroelectr Freq Control; 2018 May; 65(5):844-850. PubMed ID: 29733286 [TBL] [Abstract][Full Text] [Related]
75. Novel boundary element method for resolving plate bending problems. Chen SY; Wang LQ; Jiao L J Zhejiang Univ Sci; 2003; 4(5):584-90. PubMed ID: 12958719 [TBL] [Abstract][Full Text] [Related]