These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 12703703)

  • 1. On the dynamic stiffness of preloaded vibration isolators in the audible frequency range: modeling and experiments.
    Kari L
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):1909-21. PubMed ID: 12703703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Waveguides to Model the Dynamic Stiffness of Pre-Compressed Natural Rubber Vibration Isolators.
    Coja M; Kari L
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34070970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and analysis of a metal rubber vibration isolation system considering the nonlinear stiffness characteristics.
    Liu Y; Liu J; Pan G; Huang Q
    Rev Sci Instrum; 2023 Jan; 94(1):015105. PubMed ID: 36725566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on a nonlinear quasi-zero stiffness vibration isolator with a vibration absorber.
    Li SH; Liu N; Ding H
    Sci Prog; 2020; 103(3):36850420940891. PubMed ID: 32686995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel integrated quasi-zero stiffness vibration isolator for coupled translational and rotational vibrations.
    Ye K; Ji JC; Brown T
    Mech Syst Signal Process; 2021 Feb; 149():107340. PubMed ID: 33082621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation Method of the Vibration Reduction Effect Considering the Real Load- and Frequency-Dependent Stiffness of Slab-Track Mats.
    Zhao Z; Wei K; Ding W; Cheng F; Wang P
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33477695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of different frequencies of axial cyclic loading on time-domain vibration response of the lumbar spine: A finite element study.
    Fan W; Guo LX
    Comput Biol Med; 2017 Jul; 86():75-81. PubMed ID: 28511121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Testing and Modelling of Elastomeric Element for an Embedded Rail System.
    Li Q; Corradi R; Di Gialleonardo E; Bionda S; Collina A
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and analysis of a negative stiffness magnetic suspension vibration isolator with experimental investigations.
    Zhu Y; Li Q; Xu D; Hu C; Zhang M
    Rev Sci Instrum; 2012 Sep; 83(9):095108. PubMed ID: 23020420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Performance of Laminated High-Damping and High-Stiffness Composite Structure Composed of Metal Rubber and Silicone Rubber.
    Zheng X; Ren Z; Shen L; Zhang B; Bai H
    Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33401716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency dependence prediction and parameter identification of rubber bushing.
    Li G; Wu L; Zhang S; Liu F
    Sci Rep; 2022 Jan; 12(1):863. PubMed ID: 35039585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the high-frequency complex modulus of silicone rubber using standing Lamb waves and an inverse finite element method.
    Jonsson U; Lindahl O; Andersson B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):2106-20. PubMed ID: 25474785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic characterization of viscoelastic porous foams used in vehicles based on an inverse finite element method.
    Finnveden S; Hörlin NE; Barbagallo M
    J Acoust Soc Am; 2014 Apr; 135(4):1834-43. PubMed ID: 25234982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The vibration behavior of railway track at high frequencies under multiple preloads and wheel interactions.
    Wu TX; Thompson DJ
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):1046-53. PubMed ID: 11008807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic response for nonlinear, coupled multiscale model containing subwavelength designed microstructure instabilities.
    Konarski SG; Haberman MR; Hamilton MF
    Phys Rev E; 2020 Feb; 101(2-1):022215. PubMed ID: 32168629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical modeling and experimental testing analysis of Assembled Rubber Metal Isolator.
    Wu J; Liu C; Jiang H; Wang Z
    Sci Prog; 2020; 103(3):36850420956985. PubMed ID: 32945233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study on dynamic stiffness in typical finite element model and multi-body model of C6-C7 cervical spine segment.
    Wang Y; Wang L; Du C; Mo Z; Fan Y
    Int J Numer Method Biomed Eng; 2016 Jun; 32(6):. PubMed ID: 26466546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated Dynamic Characterization of Thermorheologically Simple Viscoelastic Materials Accounting for Frequency, Temperature, and Preload Effects.
    Olienick Filho EG; Lopes EMO; Bavastri CA
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31216676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutive Model of Isotropic Magneto-Sensitive Rubber with Amplitude, Frequency, Magnetic and Temperature Dependence under a Continuum Mechanics Basis.
    Wang B; Kari L
    Polymers (Basel); 2021 Feb; 13(3):. PubMed ID: 33540750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.