BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 12703717)

  • 1. Speech recognition under conditions of frequency-place compression and expansion.
    Baskent D; Shannon RV
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):2064-76. PubMed ID: 12703717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency-place compression and expansion in cochlear implant listeners.
    Başkent D; Shannon RV
    J Acoust Soc Am; 2004 Nov; 116(5):3130-40. PubMed ID: 15603158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between cochlear implant electrode insertion depth and frequency-place mapping.
    Başkent D; Shannon RV
    J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1405-16. PubMed ID: 15807028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants.
    Friesen LM; Shannon RV; Baskent D; Wang X
    J Acoust Soc Am; 2001 Aug; 110(2):1150-63. PubMed ID: 11519582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of electrode location and spacing on phoneme recognition with the Nucleus-22 cochlear implant.
    Fu QJ; Shannon RV
    Ear Hear; 1999 Aug; 20(4):321-31. PubMed ID: 10466568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplitude mapping and phoneme recognition in cochlear implant listeners.
    Zeng FG; Galvin JJ
    Ear Hear; 1999 Feb; 20(1):60-74. PubMed ID: 10037066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Two Place-Based Mapping Procedures on Masked Sentence Recognition as a Function of Electrode Array Angular Insertion Depth and Presence of Acoustic Low-Frequency Information: A Simulation Study.
    Dillon MT; Buss E; Johnson AD; Canfarotta MW; O'Connell BP
    Audiol Neurootol; 2023; 28(6):478-487. PubMed ID: 37482054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of tonotopically mapped speech processors for cochlear implant electrodes varying in insertion depth.
    Faulkner A; Rosen S; Stanton D
    J Acoust Soc Am; 2003 Feb; 113(2):1073-80. PubMed ID: 12597200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The right information may matter more than frequency-place alignment: simulations of frequency-aligned and upward shifting cochlear implant processors for a shallow electrode array insertion.
    Faulkner A; Rosen S; Norman C
    Ear Hear; 2006 Apr; 27(2):139-52. PubMed ID: 16518142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of dynamic range and amplitude mapping on phoneme recognition in Nucleus-22 cochlear implant users.
    Fu QJ; Shannon RV
    Ear Hear; 2000 Jun; 21(3):227-35. PubMed ID: 10890731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining acoustic and electrical hearing.
    Gantz BJ; Turner CW
    Laryngoscope; 2003 Oct; 113(10):1726-30. PubMed ID: 14520097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Place dependent stimulation rates improve pitch perception in cochlear implantees with single-sided deafness.
    Rader T; Döge J; Adel Y; Weissgerber T; Baumann U
    Hear Res; 2016 Sep; 339():94-103. PubMed ID: 27374479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing.
    Fu QJ; Shannon RV; Wang X
    J Acoust Soc Am; 1998 Dec; 104(6):3586-96. PubMed ID: 9857517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perceptually aligning apical frequency regions leads to more binaural fusion of speech in a cochlear implant simulation.
    Staisloff HE; Lee DH; Aronoff JM
    Hear Res; 2016 Jul; 337():59-64. PubMed ID: 27208791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the pitch structure associated with multiple rates and places for cochlear implant users.
    Stohl JS; Throckmorton CS; Collins LM
    J Acoust Soc Am; 2008 Feb; 123(2):1043-53. PubMed ID: 18247906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Holes in hearing.
    Shannon RV; Galvin JJ; Baskent D
    J Assoc Res Otolaryngol; 2002 Jun; 3(2):185-99. PubMed ID: 12162368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric to acoustic pitch matching: a possible way to improve individual cochlear implant fitting.
    Nardo WD; Cantore I; Marchese MR; Cianfrone F; Scorpecci A; Giannantonio S; Paludetti G
    Eur Arch Otorhinolaryngol; 2008 Nov; 265(11):1321-8. PubMed ID: 18379812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of introducing unprocessed low-frequency information on the reception of envelope-vocoder processed speech.
    Qin MK; Oxenham AJ
    J Acoust Soc Am; 2006 Apr; 119(4):2417-26. PubMed ID: 16642854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perception of vowels and prosody by cochlear implant recipients in noise.
    Van Zyl M; Hanekom JJ
    J Commun Disord; 2013; 46(5-6):449-64. PubMed ID: 24157128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity in human pitch perception induced by tonotopically mismatched electro-acoustic stimulation.
    Reiss LA; Turner CW; Karsten SA; Gantz BJ
    Neuroscience; 2014 Jan; 256():43-52. PubMed ID: 24157931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.