These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12703848)

  • 1. The effect of prolonged cycling on pedal forces.
    Sanderson DJ; Black A
    J Sports Sci; 2003 Mar; 21(3):191-9. PubMed ID: 12703848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer.
    Ericson M
    Scand J Rehabil Med Suppl; 1986; 16():1-43. PubMed ID: 3468609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of cadence and power output on the biomechanics of force application during steady-rate cycling in competitive and recreational cyclists.
    Sanderson DJ
    J Sports Sci; 1991; 9(2):191-203. PubMed ID: 1895355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Load moments about the hip and knee joints during ergometer cycling.
    Ericson MO; Bratt A; Nisell R; Németh G; Ekholm J
    Scand J Rehabil Med; 1986; 18(4):165-72. PubMed ID: 3810083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of crank length on joint-specific power during maximal cycling.
    Barratt PR; Korff T; Elmer SJ; Martin JC
    Med Sci Sports Exerc; 2011 Sep; 43(9):1689-97. PubMed ID: 21311357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of cadence and power output on force application and in-shoe pressure distribution during cycling by competitive and recreational cyclists.
    Sanderson DJ; Hennig EM; Black AH
    J Sports Sci; 2000 Mar; 18(3):173-81. PubMed ID: 10737268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint-specific power production during submaximal and maximal cycling.
    Elmer SJ; Barratt PR; Korff T; Martin JC
    Med Sci Sports Exerc; 2011 Oct; 43(10):1940-7. PubMed ID: 21448081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crank inertial load has little effect on steady-state pedaling coordination.
    Fregly BJ; Zajac FE; Dairaghi CA
    J Biomech; 1996 Dec; 29(12):1559-67. PubMed ID: 8945654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint-specific power absorption during eccentric cycling.
    Elmer SJ; Madigan ML; LaStayo PC; Martin JC
    Clin Biomech (Bristol, Avon); 2010 Feb; 25(2):154-8. PubMed ID: 19931956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding recumbent cycling: instrumentation design and biomechanical analysis.
    Reiser RF; Peterson ML; Broker JP
    Biomed Sci Instrum; 2002; 38():209-14. PubMed ID: 12085603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscular activity during uphill cycling: effect of slope, posture, hand grip position and constrained bicycle lateral sways.
    Duc S; Bertucci W; Pernin JN; Grappe F
    J Electromyogr Kinesiol; 2008 Feb; 18(1):116-27. PubMed ID: 17123833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle coordination while pulling up during cycling.
    Mornieux G; Gollhofer A; Stapelfeldt B
    Int J Sports Med; 2010 Dec; 31(12):843-6. PubMed ID: 20827654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of pedal crank arm length on joint angle and power production in upright cycle ergometry.
    Too D; Landwer GE
    J Sports Sci; 2000 Mar; 18(3):153-61. PubMed ID: 10737266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L; Thomas D
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of muscle-tendon length on joint moment and power during sprint starts.
    Mero A; Kuitunen S; Harland M; Kyröläinen H; Komi PV
    J Sports Sci; 2006 Feb; 24(2):165-73. PubMed ID: 16368626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of cycling kinetics during recumbent bicycling in subjects with and without diabetes.
    Perell KL; Gregor S; Kim G; Rushatakankovit S; Scremin E; Levin S; Gregor R
    J Rehabil Res Dev; 2002; 39(1):13-20. PubMed ID: 11926324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of moving forward or backward on the saddle on knee joint forces during cycling.
    Bini RR; Hume PA; Lanferdini FJ; Vaz MA
    Phys Ther Sport; 2013 Feb; 14(1):23-7. PubMed ID: 23312729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscular and non-muscular contributions to maximum power cycling in children and adults: implications for developmental motor control.
    Korff T; Hunter EL; Martin JC
    J Exp Biol; 2009 Mar; 212(Pt 5):599-603. PubMed ID: 19218509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does saddle height affect patellofemoral and tibiofemoral forces during bicycling for rehabilitation?
    Tamborindeguy AC; Rico Bini R
    J Bodyw Mov Ther; 2011 Apr; 15(2):186-91. PubMed ID: 21419359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joint-specific power production and fatigue during maximal cycling.
    Martin JC; Brown NA
    J Biomech; 2009 Mar; 42(4):474-9. PubMed ID: 19150715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.