These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 12703896)

  • 1. Determination of ethylene oxide by solid-phase microextraction device with on-fiber derivatization.
    Tsai SW; Wu KK
    J Chromatogr A; 2003 Mar; 991(1):1-11. PubMed ID: 12703896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laboratory and field validations of a solid-phase microextraction device for the determination of ethylene oxide.
    Tsai SW; Tsai ST; Wang VS; Lai JS
    J Chromatogr A; 2004 Feb; 1026(1-2):25-30. PubMed ID: 14763729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusive sampling of airborne furfural by solid-phase microextraction device with on-fiber derivatization.
    Tsai SW; Kao KY
    J Chromatogr A; 2006 Sep; 1129(1):29-33. PubMed ID: 16934273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-weighted average sampling of airborne n-valeraldehyde by a solid-phase microextration device.
    Tsai SW; Chang TA
    J Chromatogr A; 2002 Apr; 954(1-2):191-8. PubMed ID: 12058903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-weighted average sampling of airborne propylene glycol ethers by a solid-phase microextraction device.
    Shih HC; Tsai SW; Kuo CH
    J Occup Environ Hyg; 2012; 9(7):427-36. PubMed ID: 22651222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid determination of ethylene oxide with fiber-packed sample preparation needle.
    Ueta I; Saito Y; Ghani NB; Ogawa M; Yogo K; Abe A; Shirai S; Jinno K
    J Chromatogr A; 2009 Apr; 1216(14):2848-53. PubMed ID: 19013578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passive sampling of ambient ozone by solid phase microextraction with on-fiber derivatization.
    Lee IS; Tsai SW
    Anal Chim Acta; 2008 Mar; 610(2):149-55. PubMed ID: 18291125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new approach for diffusive sampling based on SPME for occupational exposure assessment.
    Marín P; Periago JF; Prado C
    J Occup Environ Hyg; 2013; 10(3):132-42. PubMed ID: 23356408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene packed needle trap device as a novel field sampler for determination of perchloroethylene in the air of dry cleaning establishments.
    Heidari M; Bahrami A; Ghiasvand AR; Emam MR; Shahna FG; Soltanian AR
    Talanta; 2015 Jan; 131():142-8. PubMed ID: 25281085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a personal isocyanate sampler based on DBA derivatization on solid-phase microextraction fibers.
    Batlle R; Colmsjö A; Nilsson U
    Fresenius J Anal Chem; 2001 Oct; 371(4):514-8. PubMed ID: 11760062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development and evaluation of a hydrobromic acid-coated sampling tube for measuring occupational exposures to ethylene oxide.
    Cummins KJ; Schultz GR; Lee JS; Nelson JH; Reading JC
    Am Ind Hyg Assoc J; 1987 Jun; 48(6):563-73. PubMed ID: 3039819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-weighted average passive sampling with a solid-phase microextraction device.
    Chen Y; Pawliszyn J
    Anal Chem; 2003 May; 75(9):2004-10. PubMed ID: 12720333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-weighted average sampling with solid-phase microextraction device: implications for enhanced personal exposure monitoring to airborne pollutants.
    Martos PA; Pawliszyn J
    Anal Chem; 1999 Apr; 71(8):1513-20. PubMed ID: 10221072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Time-Weighted Average Sampling of Odorous Volatile Organic Compounds in Air with Solid-Phase Microextraction Fiber Housed inside a GC Glass Liner: Proof of Concept.
    Tursumbayeva M; Koziel JA; Maurer DL; Kenessov B; Rice S
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30678060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid phase microextraction as a short-term sampling technique for BTEX occupational exposure.
    Schüpfer PY; Huynh CK
    J Occup Environ Hyg; 2008 Aug; 5(8):490-500. PubMed ID: 18569516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring of PAHs in air by collection on XAD-2 adsorbent then microwave-assisted thermal desorption coupled with headspace solid-phase microextraction and gas chromatography with mass spectrometric detection.
    Wei MC; Chang WT; Jen JF
    Anal Bioanal Chem; 2007 Feb; 387(3):999-1005. PubMed ID: 17200847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of headspace solid-phase microextraction gas chromatography-atomic emission detection analysis of monomethylmercury.
    Geerdink RB; Breidenbach R; Epema OJ
    J Chromatogr A; 2007 Dec; 1174(1-2):7-12. PubMed ID: 17904566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-programmable low thermal mass silicon micromachined gas chromatography and differential mobility detection for the fast analysis of trace level of ethylene oxide in medical work place atmospheres.
    Luong J; Gras R; Cortes HJ; Shellie RA
    J Chromatogr A; 2012 Oct; 1261():136-41. PubMed ID: 22809518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of odorous trichlorobromophenols in water by in-sample derivatization/solid-phase microextraction GC/MS.
    Díaz A; Ventura F; Galceran MT
    Anal Bioanal Chem; 2006 Sep; 386(2):293-8. PubMed ID: 16896627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of benzene at trace levels in air by a novel method based on solid-phase microextraction gas chromatography/mass spectrometry.
    Saba A; Cuzzola A; Raffaelli A; Pucci S; Salvadori P
    Rapid Commun Mass Spectrom; 2001; 15(24):2404-8. PubMed ID: 11746910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.