BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 12703906)

  • 1. High-performance cation-exchange chromatofocusing of proteins.
    Kang X; Frey DD
    J Chromatogr A; 2003 Mar; 991(1):117-28. PubMed ID: 12703906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatofocusing of peptides and proteins using linear pH gradients formed on strong ion-exchange adsorbents.
    Kang X; Frey DD
    Biotechnol Bioeng; 2004 Aug; 87(3):376-87. PubMed ID: 15281112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance chromatofocusing using linear and concave pH gradients formed with simple buffer mixtures. II. Separation of proteins.
    Kang X; Bates RC; Frey DD
    J Chromatogr A; 2000 Aug; 890(1):37-43. PubMed ID: 10976792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatofocusing using micropellicular column packings with computer-aided design of the elution buffer composition.
    Kang X; Frey DD
    Anal Chem; 2002 Mar; 74(5):1038-45. PubMed ID: 11924961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of buffer concentration on gradient chromatofocusing performance separating protiens on a high-performance DEAE column.
    Shan L; Anderson DJ
    J Chromatogr A; 2001 Feb; 909(2):191-205. PubMed ID: 11269519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gradient chromatofocusing. versatile pH gradient separation of proteins in ion-exchange HPLC: characterization studies.
    Shan L; Anderson DJ
    Anal Chem; 2002 Nov; 74(21):5641-9. PubMed ID: 12433100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved isoelectric focusing chromatography on strong anion exchange media via a new model that custom designs mobile phases using simple buffers.
    Choy DY; Creagh AL; Haynes C
    Biotechnol Bioeng; 2014 Mar; 111(3):552-64. PubMed ID: 24166014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monoclonal antibody heterogeneity analysis and deamidation monitoring with high-performance cation-exchange chromatofocusing using simple, two component buffer systems.
    Kang X; Kutzko JP; Hayes ML; Frey DD
    J Chromatogr A; 2013 Mar; 1283():89-97. PubMed ID: 23428023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of chromatofocusing techniques employing mixed-mode column packings for protein separations.
    Guo H; Li X; Frey DD
    J Chromatogr A; 2014 Jan; 1323():57-65. PubMed ID: 24296295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasi-linear pH gradients for chromatofocusing using simple buffer mixtures: local equilibrium theory and experimental verification.
    Bates RC; Frey DD
    J Chromatogr A; 1998 Jul; 814(1-2):43-54. PubMed ID: 9718686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and numerical studies of the chromatofocusing of dilute proteins using retained pH gradients formed on a strong-base anion-exchange column.
    Strong JC; Frey DD
    J Chromatogr A; 1997 May; 769(2):129-43. PubMed ID: 9188179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatofocusing.
    Li CM; William Hutchens T
    Methods Mol Biol; 1992; 11():237-48. PubMed ID: 21431670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance chromatofocusing using linear and concave pH gradients formed with simple buffer mixtures. I. Effect of buffer composition on the gradient shape.
    Bates RC; Kang X; Frey DD
    J Chromatogr A; 2000 Aug; 890(1):25-36. PubMed ID: 10976791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and purification of bacteriophages using chromatofocusing.
    Brorson K; Shen H; Lute S; PĂ©rez JS; Frey DD
    J Chromatogr A; 2008 Oct; 1207(1-2):110-21. PubMed ID: 18778829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification of recombinant green fluorescent protein using chromatofocusing with a pH gradient composed of multiple stepwise fronts.
    Narahari CR; Randers-Eichhorn L; Strong JC; Ramasubramanyan N; Rao G; Frey DD
    Biotechnol Prog; 2001; 17(1):150-60. PubMed ID: 11170493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge heterogeneity profiling of monoclonal antibodies using low ionic strength ion-exchange chromatography and well-controlled pH gradients on monolithic columns.
    Talebi M; Nordborg A; Gaspar A; Lacher NA; Wang Q; He XZ; Haddad PR; Hilder EF
    J Chromatogr A; 2013 Nov; 1317():148-54. PubMed ID: 24011724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple, two-component buffer enhances use of chromatofocusing for processing of therapeutic proteins.
    Logan KA; Lagerlund I; Chamow SM
    Biotechnol Bioeng; 1999 Jan; 62(2):208-15. PubMed ID: 10099531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Displacement chromatography of proteins using a self-sharpening pH front formed by adsorbed buffering species as the displacer.
    Narahari CR; Strong JC; Frey DD
    J Chromatogr A; 1998 Nov; 825(2):115-26. PubMed ID: 9842719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of salt and pH gradient elution in ion-exchange chromatography.
    Schmidt M; Hafner M; Frech C
    J Sep Sci; 2014 Jan; 37(1-2):5-13. PubMed ID: 24415551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing sample complexity in proteomics by chromatofocusing with simple buffer mixtures.
    Shen H; Li X; Bieberich CJ; Frey DD
    Methods Mol Biol; 2008; 424():187-203. PubMed ID: 18369863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.