BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 12704193)

  • 41. Malignant hyperthermia susceptibility arising from altered resting coupling between the skeletal muscle L-type Ca2+ channel and the type 1 ryanodine receptor.
    Eltit JM; Bannister RA; Moua O; Altamirano F; Hopkins PM; Pessah IN; Molinski TF; López JR; Beam KG; Allen PD
    Proc Natl Acad Sci U S A; 2012 May; 109(20):7923-8. PubMed ID: 22547813
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Elevated resting [Ca(2+)](i) in myotubes expressing malignant hyperthermia RyR1 cDNAs is partially restored by modulation of passive calcium leak from the SR.
    Yang T; Esteve E; Pessah IN; Molinski TF; Allen PD; López JR
    Am J Physiol Cell Physiol; 2007 May; 292(5):C1591-8. PubMed ID: 17182726
    [TBL] [Abstract][Full Text] [Related]  

  • 43. N-terminal region of FKBP12 is essential for binding to the skeletal ryanodine receptor.
    Lee EH; Rho SH; Kwon SJ; Eom SH; Allen PD; Kim DH
    J Biol Chem; 2004 Jun; 279(25):26481-8. PubMed ID: 15033987
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Amino acids 1-1,680 of ryanodine receptor type 1 hold critical determinants of skeletal type for excitation-contraction coupling. Role of divergence domain D2.
    Perez CF; Mukherjee S; Allen PD
    J Biol Chem; 2003 Oct; 278(41):39644-52. PubMed ID: 12900411
    [TBL] [Abstract][Full Text] [Related]  

  • 45. RyR1-mediated Ca2+ leak and Ca2+ entry determine resting intracellular Ca2+ in skeletal myotubes.
    Eltit JM; Yang T; Li H; Molinski TF; Pessah IN; Allen PD; Lopez JR
    J Biol Chem; 2010 Apr; 285(18):13781-7. PubMed ID: 20207743
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ca2+ release through ryanodine receptors regulates skeletal muscle L-type Ca2+ channel expression.
    Avila G; O'Connell KM; Groom LA; Dirksen RT
    J Biol Chem; 2001 May; 276(21):17732-8. PubMed ID: 11278546
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors).
    Marx SO; Ondrias K; Marks AR
    Science; 1998 Aug; 281(5378):818-21. PubMed ID: 9694652
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ryanodine receptor type 1 (RyR1) mutations C4958S and C4961S reveal excitation-coupled calcium entry (ECCE) is independent of sarcoplasmic reticulum store depletion.
    Hurne AM; O'Brien JJ; Wingrove D; Cherednichenko G; Allen PD; Beam KG; Pessah IN
    J Biol Chem; 2005 Nov; 280(44):36994-7004. PubMed ID: 16120606
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Channel Gating Dependence on Pore Lining Helix Glycine Residues in Skeletal Muscle Ryanodine Receptor.
    Mei Y; Xu L; Mowrey DD; Mendez Giraldez R; Wang Y; Pasek DA; Dokholyan NV; Meissner G
    J Biol Chem; 2015 Jul; 290(28):17535-45. PubMed ID: 25998124
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mapping sites of potential proximity between the dihydropyridine receptor and RyR1 in muscle using a cyan fluorescent protein-yellow fluorescent protein tandem as a fluorescence resonance energy transfer probe.
    Papadopoulos S; Leuranguer V; Bannister RA; Beam KG
    J Biol Chem; 2004 Oct; 279(42):44046-56. PubMed ID: 15280389
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Muscle weakness in Ryr1I4895T/WT knock-in mice as a result of reduced ryanodine receptor Ca2+ ion permeation and release from the sarcoplasmic reticulum.
    Loy RE; Orynbayev M; Xu L; Andronache Z; Apostol S; Zvaritch E; MacLennan DH; Meissner G; Melzer W; Dirksen RT
    J Gen Physiol; 2011 Jan; 137(1):43-57. PubMed ID: 21149547
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of S-glutathionylation and S-nitrosylation on calmodulin binding to triads and FKBP12 binding to type 1 calcium release channels.
    Aracena P; Tang W; Hamilton SL; Hidalgo C
    Antioxid Redox Signal; 2005; 7(7-8):870-81. PubMed ID: 15998242
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization and mapping of the 12 kDa FK506-binding protein (FKBP12)-binding site on different isoforms of the ryanodine receptor and of the inositol 1,4,5-trisphosphate receptor.
    Bultynck G; De Smet P; Rossi D; Callewaert G; Missiaen L; Sorrentino V; De Smedt H; Parys JB
    Biochem J; 2001 Mar; 354(Pt 2):413-22. PubMed ID: 11171121
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Homer regulates gain of ryanodine receptor type 1 channel complex.
    Feng W; Tu J; Yang T; Vernon PS; Allen PD; Worley PF; Pessah IN
    J Biol Chem; 2002 Nov; 277(47):44722-30. PubMed ID: 12223488
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Discovery of a novel family of FKBP12 "reshapers" and their use as calcium modulators in skeletal muscle under nitro-oxidative stress.
    Aizpurua JM; Miranda JI; Irastorza A; Torres E; Eceiza M; Sagartzazu-Aizpurua M; Ferrón P; Aldanondo G; Lasa-Fernández H; Marco-Moreno P; Dadie N; López de Munain A; Vallejo-Illarramendi A
    Eur J Med Chem; 2021 Mar; 213():113160. PubMed ID: 33493827
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Type 1 and type 3 ryanodine receptors generate different Ca(2+) release event activity in both intact and permeabilized myotubes.
    Ward CW; Protasi F; Castillo D; Wang Y; Chen SR; Pessah IN; Allen PD; Schneider MF
    Biophys J; 2001 Dec; 81(6):3216-30. PubMed ID: 11720987
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cardiac-type EC-coupling in dysgenic myotubes restored with Ca2+ channel subunit isoforms alpha1C and alpha1D does not correlate with current density.
    Kasielke N; Obermair GJ; Kugler G; Grabner M; Flucher BE
    Biophys J; 2003 Jun; 84(6):3816-28. PubMed ID: 12770887
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The calmodulin binding region of the skeletal ryanodine receptor acts as a self-modulatory domain.
    Zhu X; Ghanta J; Walker JW; Allen PD; Valdivia HH
    Cell Calcium; 2004 Feb; 35(2):165-77. PubMed ID: 14706290
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of the skeletal muscle ryanodine receptor/Ca2+-release channel RyR1 by S-palmitoylation.
    Chaube R; Hess DT; Wang YJ; Plummer B; Sun QA; Laurita K; Stamler JS
    J Biol Chem; 2014 Mar; 289(12):8612-9. PubMed ID: 24509862
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of calcium permeation in dihydropyridine receptor function. Insights into channel gating and excitation-contraction coupling.
    Dirksen RT; Beam KG
    J Gen Physiol; 1999 Sep; 114(3):393-403. PubMed ID: 10469729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.