BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 1270426)

  • 1. Nucleic acid helix-coil transitions mediated by helix-unwinding proteins from calf thymus.
    Herrick G; Alberts B
    J Biol Chem; 1976 Apr; 251(7):2133-41. PubMed ID: 1270426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA "melting" proteins. I. Effects of bovine pancreatic ribonuclease binding on the conformation and stability of DNA.
    Jensen DE; von Hippel PH
    J Biol Chem; 1976 Nov; 251(22):7198-214. PubMed ID: 993211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-stranded DNA structure and DNA polymerase activity in the presence of nucleic acid helix-unwinding proteins from calf thymus.
    Herrick G; Delius H; Alberts B
    J Biol Chem; 1976 Apr; 251(7):2142-6. PubMed ID: 1270427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and physical characterization of nucleic acid helix-unwinding proteins from calf thymus.
    Herrick G; Alberts B
    J Biol Chem; 1976 Apr; 251(7):2124-32. PubMed ID: 1270425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical studies of the interaction of a calf thymus helix-destablizing protein with nucleic acids.
    Karpel RL; Burchard AC
    Biochemistry; 1980 Sep; 19(20):4674-82. PubMed ID: 6252954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of the A1 heterogeneous nuclear ribonucleoprotein and its proteolytic derivative, UP1, with RNA and DNA: evidence for multiple RNA binding domains and salt-dependent binding mode transitions.
    Nadler SG; Merrill BM; Roberts WJ; Keating KM; Lisbin MJ; Barnett SF; Wilson SH; Williams KR
    Biochemistry; 1991 Mar; 30(11):2968-76. PubMed ID: 1848781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal denaturation of calf thymus DNA: existence of a GC-richer fraction.
    Li HJ; Brand B; Rotter A
    Nucleic Acids Res; 1974 Feb; 1(2):257-65. PubMed ID: 4213500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Nucleoprotein melting. I. Theory of helix-coil transition of DNA in the presence of proteins with cooperative character of interaction under conditions of reversible binding].
    Akhrem AA; Lando DIu; Krot VI
    Mol Biol (Mosk); 1976; 10(6):1332-40. PubMed ID: 1053088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of selectively reacting ligands on the helix-coil transition of DNA. III. Calculation of the melting curves of DNA-ligand complexes].
    Akhrem AA; Lando DIu
    Mol Biol (Mosk); 1981; 15(5):1083-92. PubMed ID: 7300827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic studies of ribonucleic acid renaturation by a helix-destabilizing protein.
    Karpel RL; Miller NS; Fresco JR
    Biochemistry; 1982 Apr; 21(9):2102-8. PubMed ID: 6178431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helix-coil transition and conformational studies of nucleoprotein: poly(L-arginine)- and poly(L-arginine87, L-ornithine13)-DNA complexes. I. Thermal denaturation.
    Epstein P; Yu SS; Li HJ
    Biochemistry; 1974 Aug; 13(18):3706-12. PubMed ID: 4859349
    [No Abstract]   [Full Text] [Related]  

  • 12. High pressure liquid chromatography purification of UP1 and UP2, two related single-stranded nucleic acid-binding proteins from calf thymus.
    Merrill BM; LoPresti MB; Stone KL; Williams KR
    J Biol Chem; 1986 Jan; 261(2):878-83. PubMed ID: 3941105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanics of chromatin template activation. Physical evidence for destabilization of nucleoproteins by polyanions.
    Ansevin AT; Macdonald KK; Smith CE; Hnilica LS
    J Biol Chem; 1975 Jan; 250(1):281-9. PubMed ID: 1141207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of histone F1 on calf thymus nucleohistone DNA.
    Hayashi K
    J Mol Biol; 1975 May; 94(3):397-408. PubMed ID: 1236956
    [No Abstract]   [Full Text] [Related]  

  • 15. Mammalian heterogeneous ribonucleoprotein A1 and its constituent domains. Nucleic acid interaction, structural stability and self-association.
    Casas-Finet JR; Smith JD; Kumar A; Kim JG; Wilson SH; Karpel RL
    J Mol Biol; 1993 Feb; 229(4):873-89. PubMed ID: 8445653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Counterion association with native and denatured nucleic acids: an experimental approach.
    Völker J; Klump HH; Manning GS; Breslauer KJ
    J Mol Biol; 2001 Jul; 310(5):1011-25. PubMed ID: 11501992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based incorporation of 6-methyl-8-(2-deoxy-beta-ribofuranosyl)isoxanthopteridine into the human telomeric repeat DNA as a probe for UP1 binding and destabilization of G-tetrad structures.
    Myers JC; Moore SA; Shamoo Y
    J Biol Chem; 2003 Oct; 278(43):42300-6. PubMed ID: 12904298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid sequence of UP1, an hnRNP-derived single-stranded nucleic acid binding protein from calf thymus.
    Merrill BM; Lopresti MB; Stone KL; Williams KR
    Int J Pept Protein Res; 1987 Jan; 29(1):21-39. PubMed ID: 3032834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid sequence of the UP1 calf thymus helix-destabilizing protein and its homology to an analogous protein from mouse myeloma.
    Williams KR; Stone KL; LoPresti MB; Merrill BM; Planck SR
    Proc Natl Acad Sci U S A; 1985 Sep; 82(17):5666-70. PubMed ID: 2994041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stablilzation of two-standard ribohomopolymer helices and destabilzation of a three-stranded helix by ethidium bromide.
    Waring MJ
    Biochem J; 1974 Nov; 143(2):483-6. PubMed ID: 4462565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.