These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 1270458)

  • 1. Mechanism of failure of biocompatible-treated surfaces.
    Stewart GP; Wilkov MA
    J Biomed Mater Res; 1976 May; 10(3):413-28. PubMed ID: 1270458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coating of commercially available materials with a new heparinizable material.
    Barbucci R; Albanese A; Magnani A; Tempesti F
    J Biomed Mater Res; 1991 Oct; 25(10):1259-74. PubMed ID: 1839834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heparin bioconjugate with a thermoresponsive cationic branched polymer: a novel aqueous antithrombogenic coating material.
    Nakayama Y; Okahashi R; Iwai R; Uchida K
    Langmuir; 2007 Jul; 23(15):8206-11. PubMed ID: 17571905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoresponsive heparin bioconjugate as novel aqueous antithrombogenic coating material.
    Nakayama Y; Yamaoka S; Nemoto Y; Alexey B; Uchida K
    Bioconjug Chem; 2011 Feb; 22(2):193-9. PubMed ID: 21250656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Which glycosaminoglycans are suitable for antithrombogenic or athrombogenic coatings of biomaterials? Part II: Covalently immobilized endothelial cell surface heparan sulfate (ESHS) and heparin (HE) on synthetic polymers and results of animal experiments.
    Baumann H; Keller R
    Semin Thromb Hemost; 1997; 23(2):215-23. PubMed ID: 9200349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of polymeric coatings with combined nitric oxide release and immobilized active heparin.
    Zhou Z; Meyerhoff ME
    Biomaterials; 2005 Nov; 26(33):6506-17. PubMed ID: 15941584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of polymer and self-assembled monolayer-coated silicone surfaces to reduce neural cell growth.
    Patel KR; Tang H; Grever WE; Simon Ng KY; Xiang J; Keep RF; Cao T; McAllister JP
    Biomaterials; 2006 Mar; 27(8):1519-26. PubMed ID: 16174526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heparin release from thermosensitive polymer coatings: in vivo studies.
    Gutowska A; Bae YH; Jacobs H; Mohammad F; Mix D; Feijen J; Kim SW
    J Biomed Mater Res; 1995 Jul; 29(7):811-21. PubMed ID: 7593019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(dimethylsiloxane)-poly(ethylene oxide)-heparin block copolymers. II: Surface characterization and in vitro assessments.
    Grainger DW; Knutson K; Kim SW; Feijen J
    J Biomed Mater Res; 1990 Apr; 24(4):403-31. PubMed ID: 2347871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thrombus formation at the surface of guide-wire models: effects of heparin-releasing or heparin-exposing surface coatings.
    Aldenhoff YB; Hanssen JH; Knetsch ML; Koole LH
    J Vasc Interv Radiol; 2007 Mar; 18(3):419-25. PubMed ID: 17377189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thrombin uptake and inhibition on endothelium and surfaces with a stable heparin coating: a comparative in vitro study.
    Arnander C; Dryjski M; Larsson R; Olsson P; Swedenborg J
    J Biomed Mater Res; 1986 Feb; 20(2):235-46. PubMed ID: 3957961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro hemocompatibility of albumin-heparin multilayer coatings on polyethersulfone prepared by the layer-by-layer technique.
    Sperling C; Houska M; Brynda E; Streller U; Werner C
    J Biomed Mater Res A; 2006 Mar; 76(4):681-9. PubMed ID: 16302224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics study of heparin based coatings.
    Almlöf M; Kristensen EM; Siegbahn H; Aqvist J
    Biomaterials; 2008 Nov; 29(33):4463-9. PubMed ID: 18725169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface characterization of heparin-complexing poly(amido amine) chains grafted on polyurethane and glass surfaces.
    Barbucci R; Baszkin A; Benvenuti M; de Lourdes Costa M; Ferruti P
    J Biomed Mater Res; 1987 Apr; 21(4):443-57. PubMed ID: 3584159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of surface roughness of polymers on thrombus formation].
    Chepurov AK; Mertsalova NN; Dubovich TI; Ifashkin GV; Chekanova VD
    Med Tekh; 1977; (6):25-9. PubMed ID: 145536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thrombogenicity of heparin and non-heparin bound arterial prostheses: an in vitro evaluation.
    Mohamed MS; Mukherjee M; Kakkar VV
    J R Coll Surg Edinb; 1998 Jun; 43(3):155-7. PubMed ID: 9654873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biliary stent clogging solved by nanotechnology? In vitro study of inorganic-organic sol-gel coatings for teflon stents.
    Seitz U; Block A; Schaefer AC; Wienhold U; Bohnacker S; Siebert K; Seewald S; Thonke F; Wulff H; De Weerth A; Soehendra N
    Gastroenterology; 2007 Jul; 133(1):65-71. PubMed ID: 17631132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of novel polyaminoetherurethaneureas and development of antithrombogenic material by their chemical modifications.
    Shibuta R; Tanaka M; Sisido M; Imanishi Y
    J Biomed Mater Res; 1986 Sep; 20(7):971-87. PubMed ID: 3760013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [An investigation of HAP/organic polymer composite coatings prepared by electrochemical co-deposition technique].
    Hu H; Lin C; Leng Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):4-7. PubMed ID: 12744149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heparin-coupled poly(poly(ethylene glycol) monomethacrylate)-Si(111) hybrids and their blood compatible surfaces.
    Xu FJ; Li YL; Kang ET; Neoh KG
    Biomacromolecules; 2005; 6(3):1759-68. PubMed ID: 15877403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.