These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 1270486)

  • 1. Protection from stress in bone and its effects. Experiments with stainless steel and plastic plates in dogs.
    Tonino AJ; Davidson CL; Klopper PJ; Linclau LA
    J Bone Joint Surg Br; 1976 Feb; 58(1):107-13. PubMed ID: 1270486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanical and morphological properties of bone beneath internal fixation plates of differing rigidity.
    Claes L
    J Orthop Res; 1989; 7(2):170-7. PubMed ID: 2918416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative histological evaluation of early fracture healing of cortical bones immobilized by stainless steel and composite plates.
    Akeson WH; Woo SL; Coutts RD; Matthews JV; Gonsalves M; Amiel D
    Calcif Tissue Res; 1975 Nov; 19(1):27-37. PubMed ID: 1201463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture.
    Jain R; Podworny N; Hearn T; Anderson GI; Schemitsch EH
    J Orthop Trauma; 1997 Oct; 11(7):490-5. PubMed ID: 9334950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain distribution in plated and unplated sheep tibia an in vivo experiment.
    Gautier E; Perren SM; Cordey J
    Injury; 2000 Sep; 31 Suppl 3():C37-44. PubMed ID: 11052379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Experimental studies on "less rigid" polyacetal plates for fracture fixation (author's transl)].
    Kusunose K
    Nihon Seikeigeka Gakkai Zasshi; 1982 May; 56(5):399-414. PubMed ID: 7108319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Less rigid internal fixation plates: historical perspectives and new concepts.
    Woo SL; Lothringer KS; Akeson WH; Coutts RD; Woo YK; Simon BR; Gomez MA
    J Orthop Res; 1984; 1(4):431-49. PubMed ID: 6491792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The advantages of titanium alloy over stainless steel plates for the internal fixation of fractures. An experimental study in dogs.
    Uhthoff HK; Bardos DI; Liskova-Kiar M
    J Bone Joint Surg Br; 1981; 63-B(3):427-84. PubMed ID: 7263759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomechanical evaluation of different plates for fixation of canine radial osteotomies.
    Jain R; Podworny N; Hearn T; Richards RR; Schemitsch EH
    J Trauma; 1998 Jan; 44(1):193-7. PubMed ID: 9464772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of stress shielding beneath a bone plate by use of a polymeric underplate. An experimental study in dogs.
    Jasmine MS; Dahners LE; Gilbert JA
    Clin Orthop Relat Res; 1989 Sep; (246):293-9. PubMed ID: 2766617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of bone remodeling using metal-polymer laminates.
    Szivek JA; Weatherly GC; Pilliar RM; Cameron HU
    J Biomed Mater Res; 1981 Nov; 15(6):853-65. PubMed ID: 7309767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects on intact femora of dogs of the application and removal of metal plates. A metabolic and structural study comparing stiffer and more flexible plates.
    Moyen BJ; Lahey PJ; Weinberg EH; Harris WH
    J Bone Joint Surg Am; 1978 Oct; 60(7):940-7. PubMed ID: 100500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Healing of plated femoral osteotomies in dogs. A mechanical study using a new test method.
    Foux A; Uhthoff HK; Black RC
    Acta Orthop Scand; 1993 Jun; 64(3):345-53. PubMed ID: 8322597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon fiber reinforced plastic (CFRP) plates versus stainless steel dynamic compression plates in the treatment of fractures of the tibiae in dogs.
    Skirving AP; Day R; Macdonald W; McLaren R
    Clin Orthop Relat Res; 1987 Nov; (224):117-24. PubMed ID: 3665229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Theoretical analysis and numerical simulation of effect of steel plate positions on steel plate rigidity in internal fixation of bone surgery].
    Chen B; Gu Y; Lü D; Lü X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):425-9. PubMed ID: 14565005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of stainless steel and composite plates in the healing of diaphyseal osteotomies of the dog radius: report on a short term study.
    Coutts RE; Akeson WH; Woo S; Matthews JV; Gonsalves M; Amiel D
    Orthop Clin North Am; 1976 Jan; 7(1):223-9. PubMed ID: 1256790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative microradiography of cortical bone in disuse osteoporosis following fracture fixation.
    Williams DF; Gore LF; Clark GC
    Biomaterials; 1983 Oct; 4(4):285-8. PubMed ID: 6640055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The effects of pulsed micro-electrical currents on internal remodeling in long tubular bone and bone healing].
    Hanaoka T
    Nihon Seikeigeka Gakkai Zasshi; 1983 Feb; 57(2):151-66. PubMed ID: 6854110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of plate position relative to bending direction on the rigidity of a plate osteosynthesis. A theoretical analysis.
    Gautier E; Perren SM; Cordey J
    Injury; 2000 Sep; 31 Suppl 3():C14-20. PubMed ID: 11052376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triage methodology for the evaluation of implant-bone interfaces.
    Mariolani JR; Belangero WD; de Arruda AC
    Biomaterials; 1994 Jun; 15(8):615-20. PubMed ID: 7948581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.