These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1270516)

  • 1. Ultrastructural and molecular characteristics of crayfish photoreceptor membranes.
    Fernandez HR; Nickel EE
    J Cell Biol; 1976 Jun; 69(3):721-32. PubMed ID: 1270516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of temperature and light on particles associated with crayfish visual membrane: a freeze-fracture analysis and electrophysiological study.
    Meyer-Rochow VB; Eguchi E
    J Neurocytol; 1984 Dec; 13(6):935-59. PubMed ID: 6534977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freeze-etch and histochemical evidence for cycling in crayfish photoreceptor membranes.
    Eguchi E; Waterman TH
    Cell Tissue Res; 1976 Jul; 169(4):419-34. PubMed ID: 991193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insect UV-, and green-photoreceptor membranes studied by the freeze-fracture technique.
    Nickel E; Menzel R
    Cell Tissue Res; 1976 Dec; 175(3):357-68. PubMed ID: 826320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical aspects of the visual process. XXXVII. Evidence for lateral aggregation of rhodopsin molecules in phospholipase C-treated bovine photoreceptor membranes.
    Olive J; Benedetti EL; van Breugel PJ; Daemen FJ; Bonting SL
    Biochim Biophys Acta; 1978 May; 509(1):129-35. PubMed ID: 647003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of rod and cone photoreceptors in the lamprey retina by freeze-replication and immunofluorescence.
    Ishikawa M; Takao M; Washioka H; Tokunaga F; Watanabe H; Tonosaki A
    Cell Tissue Res; 1987 Aug; 249(2):241-6. PubMed ID: 3304647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of receptive and non-receptive plasma membrane areas of photoreceptor cells in the leech, Hirudo medicinalis.
    Walz B
    Cell Tissue Res; 1979 May; 198(2):335-48. PubMed ID: 466675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the microvillus cytoskeleton during rhabdom formation in the retina of the crayfish Procambarus clarkii.
    Hafner GS; Tokarski TR; Kipp J
    J Neurocytol; 1991 Jul; 20(7):585-96. PubMed ID: 1919606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A possible role of rhodopsin in maintaining bilayer structure in the photoreceptor membrane.
    De Grip WJ; Drenthe EH; Van Echteld CJ; De Kruijff B; Verkleij AJ
    Biochim Biophys Acta; 1979 Dec; 558(3):330-7. PubMed ID: 508752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodopsin particles in the photoreceptor membrane of an insect.
    Boschek CB; Hamdorf K
    Z Naturforsch C Biosci; 1976; 31(11-12):763. PubMed ID: 138303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digitonin effects on photoreceptor adenylate cyclase.
    Bitensky MW; Gorman RE; Miller WH
    Science; 1972 Mar; 175(4028):1363-4. PubMed ID: 5059564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of the rhabdomeral microvillar cytoskeleton of the crayfish (Orconectes limosus) photoreceptor by a crosslinking reagent.
    Schraermeyer U; Rack M; Stieve H
    Comp Biochem Physiol B; 1992 May; 102(1):43-8. PubMed ID: 1526132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-fracture study of photoreceptor outer segments and pigment epithelium in dystrophic and normal retinas.
    McLaughlin BJ; Boykins LG
    J Comp Neurol; 1981 Jul; 199(4):553-67. PubMed ID: 7276240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of membranes in crayfish muscle: comparison of phasic and tonic fibres.
    Eastwood AB; Franzini-Armstrong C; Peracchia C
    J Muscle Res Cell Motil; 1982 Sep; 3(3):273-94. PubMed ID: 7130377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane-associated actin in the rhabdomeral microvilli of crayfish photoreceptors.
    de Couet HG; Stowe S; Blest AD
    J Cell Biol; 1984 Mar; 98(3):834-46. PubMed ID: 6538203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The diurnal pattern of protein and photopigment synthesis in the retina of the crayfish, Procambarus clarkii.
    Hafner GS; Tokarski TR
    J Comp Physiol A; 1988 Jun; 163(2):253-8. PubMed ID: 3404485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Some quantitative characteristics of the frog retinal rod outer segments].
    Govardovskii VI; Lychakov DV
    Tsitologiia; 1975 May; 27(5):524-9. PubMed ID: 1202680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photopigment gene expression and rhabdom formation in the crayfish (Procambarus clarkii).
    Hafner GS; Martin RL; Tokarski TR
    Cell Tissue Res; 2003 Jan; 311(1):99-105. PubMed ID: 12483289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ultrastructure of lipid-depleted rod photoreceptor membranes.
    Nir I; Hall MO
    J Cell Biol; 1974 Nov; 63(2 Pt 1):587-98. PubMed ID: 4138898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunocytochemical localization of opsin in outer segments and Golgi zones of frog photoreceptor cells. An electron microscope analysis of cross-linked albumin-embedded retinas.
    Papermaster DS; Schneider BG; Zorn MA; Kraehenbuhl JP
    J Cell Biol; 1978 Apr; 77(1):196-210. PubMed ID: 350891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.