These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 12705173)

  • 21. Effects of chlorhexidine, minocycline, and metronidazole on Porphyromonas gingivalis strain 381 in biofilms.
    Noiri Y; Okami Y; Narimatsu M; Takahashi Y; Kawahara T; Ebisu S
    J Periodontol; 2003 Nov; 74(11):1647-51. PubMed ID: 14682662
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A fluorescence assay to determine the viable biomass of microcosm dental plaque biofilms.
    Filoche SK; Coleman MJ; Angker L; Sissons CH
    J Microbiol Methods; 2007 Jun; 69(3):489-96. PubMed ID: 17408789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An in vitro oral biofilm model for comparing the efficacy of antimicrobial mouthrinses.
    Shapiro S; Giertsen E; Guggenheim B
    Caries Res; 2002; 36(2):93-100. PubMed ID: 12037365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A synergistic chlorhexidine/chitosan combination for improved antiplaque strategies.
    Decker EM; von Ohle C; Weiger R; Wiech I; Brecx M
    J Periodontal Res; 2005 Oct; 40(5):373-7. PubMed ID: 16105089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Response of single species biofilms and microcosm dental plaques to pulsing with chlorhexidine.
    Pratten J; Smith AW; Wilson M
    J Antimicrob Chemother; 1998 Oct; 42(4):453-9. PubMed ID: 9818743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of two antimicrobial agents on early in situ biofilm formation.
    Auschill TM; Hein N; Hellwig E; Follo M; Sculean A; Arweiler NB
    J Clin Periodontol; 2005 Feb; 32(2):147-52. PubMed ID: 15691343
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro antimicrobial activity of sodium hypochlorite and chlorhexidine against selected single-species biofilms.
    Sena NT; Gomes BP; Vianna ME; Berber VB; Zaia AA; Ferraz CC; Souza-Filho FJ
    Int Endod J; 2006 Nov; 39(11):878-85. PubMed ID: 17014526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dental plaque bacteria with reduced susceptibility to chlorhexidine are multidrug resistant.
    Saleem HG; Seers CA; Sabri AN; Reynolds EC
    BMC Microbiol; 2016 Sep; 16():214. PubMed ID: 27629863
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An in vitro investigation of the antimicrobial activity of an herbal mouthrinse.
    Kaim JM; Gultz J; Do L; Scherer W
    J Clin Dent; 1998; 9(2):46-8. PubMed ID: 10518853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Composition and susceptibility to chlorhexidine of multispecies biofilms of oral bacteria.
    Pratten J; Barnett P; Wilson M
    Appl Environ Microbiol; 1998 Sep; 64(9):3515-9. PubMed ID: 9726908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Susceptibilities of Actinobacillus actinomycetemcomitans biofilms to oral antiseptics.
    Thrower Y; Pinney RJ; Wilson M
    J Med Microbiol; 1997 May; 46(5):425-9. PubMed ID: 9152040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro antiplaque activity of octenidine dihydrochloride (WIN 41464-2) against preformed plaques of selected oral plaque-forming microorganisms.
    Slee AM; O'Connor JR
    Antimicrob Agents Chemother; 1983 Mar; 23(3):379-84. PubMed ID: 6847170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a flow method for susceptibility testing of oral biofilms in vitro.
    Larsen T; Fiehn NE
    APMIS; 1995 May; 103(5):339-44. PubMed ID: 7654358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of the antibacterial agents octenidine and chlorhexidine on the plaque flora in primates.
    Emilson CG; Bowen WH; Robrish SA; Kemp CW
    Scand J Dent Res; 1981 Oct; 89(5):384-92. PubMed ID: 6952538
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A dynamic in vitro model for evaluating antimicrobial activity against bacterial biofilms using a new device and clinical-used catheters.
    García I; Conejo Mdel C; Ojeda A; Rodríguez-Baño J; Pascual A
    J Microbiol Methods; 2010 Dec; 83(3):307-11. PubMed ID: 20888868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Evaluation of the cario-static effect of Nidus vespae on biofilm model in vitro].
    Huang Z; Li J; Zhou X
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2003 Aug; 21(4):304-6, 317. PubMed ID: 14513591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antimicrobial activity of chemomechanical gingival retraction products.
    Hsu B; Lee S; Schwass D; Tompkins G
    J Am Dent Assoc; 2017 Jul; 148(7):493-499. PubMed ID: 28449940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro oral biofilm formation on triclosan-coated sutures in the absence and presence of additional antiplaque treatment.
    Venema S; Abbas F; van de Belt-Gritter B; van der Mei HC; Busscher HJ; van Hoogmoed CG
    J Oral Maxillofac Surg; 2011 Apr; 69(4):980-5. PubMed ID: 20674122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plaques from different individuals yield different microbiota responses to oral-antiseptic treatment.
    Filoche SK; Soma D; van Bekkum M; Sissons CH
    FEMS Immunol Med Microbiol; 2008 Oct; 54(1):27-36. PubMed ID: 18647353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selection for high-level resistance by chronic triclosan exposure is not universal.
    McBain AJ; Ledder RG; Sreenivasan P; Gilbert P
    J Antimicrob Chemother; 2004 May; 53(5):772-7. PubMed ID: 15117935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.