These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 12705647)
1. Normal and abnormal trans-oxygenator pressure gradients during cardiopulmonary bypass. Fisher AR; Baker M; Buffin M; Campbell P; Hansbro S; Kennington S; Lilley A; Whitehorne M Perfusion; 2003 Mar; 18(1):25-30. PubMed ID: 12705647 [TBL] [Abstract][Full Text] [Related]
2. Potential problem when using the new lower-prime hollow-fibre membrane oxygenators with uncoated stainless steel heat exchangers. Palanzo DA; Manley NJ; Montesano RM; Quinn M; Elmore BA; Gustafson PA; Zarro DL; Meloy PC Perfusion; 1996 Nov; 11(6):481-5. PubMed ID: 8971950 [TBL] [Abstract][Full Text] [Related]
3. Heparin-coated equipment reduces the risk of oxygenator failure. Wahba A; Philipp A; Behr R; Birnbaum DE Ann Thorac Surg; 1998 May; 65(5):1310-2. PubMed ID: 9594857 [TBL] [Abstract][Full Text] [Related]
4. The incidence and cause of emergency oxygenator changeovers. Fisher AR Perfusion; 1999 May; 14(3):207-12. PubMed ID: 10411251 [TBL] [Abstract][Full Text] [Related]
5. The effect of oxygenator mechanical characteristics on energy transfer during clinical cardiopulmonary bypass. Ganushchak YM; Reesink KD; Weerwind PW; Maessen JG Perfusion; 2011 Jan; 26(1):39-44. PubMed ID: 20921084 [TBL] [Abstract][Full Text] [Related]
6. Effect of oxygenator type and bypass flow pattern on the P(a-ET)CO2 gradient. Opper SE; Fibuch EE; Nelson RE; Lonergan JH J Cardiothorac Vasc Anesth; 1992 Feb; 6(1):46-50. PubMed ID: 1543853 [TBL] [Abstract][Full Text] [Related]
7. A Novel Blood Viscosity Estimation Method Based on Pressure-Flow Characteristics of an Oxygenator During Cardiopulmonary Bypass. Okahara S; Soh Z; Miyamoto S; Takahashi H; Itoh H; Takahashi S; Sueda T; Tsuji T Artif Organs; 2017 Mar; 41(3):262-266. PubMed ID: 27782314 [TBL] [Abstract][Full Text] [Related]
8. Comparison of hollow-fiber membrane oxygenators in terms of pressure drop of the membranes during normothermic and hypothermic cardiopulmonary bypass in neonates. Undar A; Owens WR; McGarry MC; Surprise DL; Kilpack VD; Mueller MW; McKenzie ED; Fraser CD Perfusion; 2005 May; 20(3):135-8. PubMed ID: 16038384 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of Capiox RX25 and Quadrox-i Adult Hollow Fiber Membrane Oxygenators in a Simulated Cardiopulmonary Bypass Circuit. Wang S; Kunselman AR; Ündar A Artif Organs; 2016 May; 40(5):E69-78. PubMed ID: 27168381 [TBL] [Abstract][Full Text] [Related]
10. Clinical evaluation of nine hollow-fibre membrane oxygenators. Segers PA; Heida JF; de Vries I; Maas C; Boogaart AJ; Eilander S Perfusion; 2001 Mar; 16(2):95-106. PubMed ID: 11334201 [TBL] [Abstract][Full Text] [Related]
11. Clinical comparison between membrane and bubble oxygenators in cardiopulmonary bypass. Fenchel G; Seybold-Epting W; Schmidt K; Stunkat R; Hoffmeister HE J Cardiovasc Surg (Torino); 1979; 20(4):419-22. PubMed ID: 479280 [TBL] [Abstract][Full Text] [Related]
12. Membrane versus bubble oxygenator for cardiac operations. A prospective randomized study. Hessel EA; Johnson DD; Ivey TD; Miller DW J Thorac Cardiovasc Surg; 1980 Jul; 80(1):111-22. PubMed ID: 6966720 [TBL] [Abstract][Full Text] [Related]
13. Is There a Relationship between Pressure Gradients through Contemporary Oxygenators and Immune Cell Proliferation during Cardiopulmonary Bypass? A Pilot Study. Stanzel RDP; Henderson M J Extra Corpor Technol; 2017 Sep; 49(3):160-167. PubMed ID: 28979039 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients. Qiu F; Guan Y; Su X; Kunselman A; Undar A Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the Maquet Neonatal and Pediatric Quadrox I with an integrated arterial line filter during cardiopulmonary bypass. Melchior RW; Schiavo K; Frey T; Rogers D; Patel J; Chelnik K; Rosenthal T Perfusion; 2012 Sep; 27(5):399-406. PubMed ID: 22717608 [TBL] [Abstract][Full Text] [Related]
16. Pulsatile and nonpulsatile extracorporeal circulation using Capiox E terumo oxygenator: a comparison study with Ultrox and Maxima membrane oxygenators. Minami K; Bairaktaris A; Murray E; Weitkemper H; Dramburg W; Körfer R J Cardiovasc Surg (Torino); 1997 Jun; 38(3):227-32. PubMed ID: 9219471 [TBL] [Abstract][Full Text] [Related]
17. [Clinical experiences with a new membrane oxygenator with low priming volume (D702 MASTER FLO 51), studies during pulsatile and constant flow perfusion]. Kobayashi S; Kitamura S; Kawachi K; Nishii T; Taniguchi S; Fukutomi M; Mizuguchi K; Hamada Y; Hasegawa J Kyobu Geka; 1989 Jun; 42(6):453-6. PubMed ID: 2779048 [TBL] [Abstract][Full Text] [Related]
18. Additional veno-venous gas exchange as a problem-solving strategy for an oxygenator not transferring oxygen in paediatric cardiopulmonary bypass. Boettcher W; Sinzobahamvya N; Dehmel F; Matschke A; Iben A; Cho MY; Redlin M; Photiadis J Interact Cardiovasc Thorac Surg; 2017 Nov; 25(5):687-689. PubMed ID: 29049743 [TBL] [Abstract][Full Text] [Related]
19. A clinical evaluation of the Maquet Quadrox-i Neonatal oxygenator with integrated arterial filter. Ginther RM; Gorney R; Cruz R Perfusion; 2013 May; 28(3):194-9. PubMed ID: 23449822 [TBL] [Abstract][Full Text] [Related]
20. Testing of heat exchangers in membrane oxygenators using air pressure. Hamilton C; Stein J; Seidler R; Kind R; Beck K; Tosok J; Upterfofel J Perfusion; 2006 Mar; 21(2):105-7. PubMed ID: 16615688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]