BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 12706045)

  • 1. Polymers derived from the amino acid L-tyrosine: polycarbonates, polyarylates and copolymers with poly(ethylene glycol).
    Bourke SL; Kohn J
    Adv Drug Deliv Rev; 2003 Apr; 55(4):447-66. PubMed ID: 12706045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of biodegradable films at aqueous surfaces: X-ray diffraction and spectroscopy studies of polylactides and tyrosine-derived polycarbonates.
    Wang W; Murthy NS; Kuzmenko I; Anderson NA; Vaknin D
    Langmuir; 2013 Sep; 29(36):11420-30. PubMed ID: 23919814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polycarbonates with Potent and Selective Antimicrobial Activity toward Gram-Positive Bacteria.
    Nimmagadda A; Liu X; Teng P; Su M; Li Y; Qiao Q; Khadka NK; Sun X; Pan J; Xu H; Li Q; Cai J
    Biomacromolecules; 2017 Jan; 18(1):87-95. PubMed ID: 28064500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of polycarbonates by melt phase interchange reactions of alkylene and arylene diacetates with alkylene and arylene diphenyl dicarbonates.
    Sweileh BA; Al-Hiari YM; Kailani MH; Mohammad HA
    Molecules; 2010 May; 15(5):3661-82. PubMed ID: 20657506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Simple, Selective, and General Catalyst for Ring Closing Depolymerization of Polyesters and Polycarbonates for Chemical Recycling.
    Gallin CF; Lee WW; Byers JA
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202303762. PubMed ID: 37093979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating the anticancer activities of guanidinium-functionalized amphiphilic random copolymers by varying the structure and composition in the hydrophobic monomer.
    Tay J; Zhao Y; Hedrick JL; Yang YY
    Theranostics; 2021; 11(18):8977-8992. PubMed ID: 34522222
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of Terminal Sterilization on PEG-Based Bioresorbable Polymers Used in Biomedical Applications.
    Bhatnagar D; Dube K; Damodaran VB; Subramanian G; Aston K; Halperin F; Mao M; Pricer K; Murthy NS; Kohn J
    Macromol Mater Eng; 2016 Oct; 301(10):1211-1224. PubMed ID: 28280451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(carbonate-amide)s Derived from Bio-Based Resources: Poly(ferulic acid-
    Noel A; Borguet YP; Raymond JE; Wooley KL
    Macromolecules; 2014 May; 47(9):2974-2983. PubMed ID: 24839309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-content profiling of cell responsiveness to graded substrates based on combinyatorially variant polymers.
    Liu E; Treiser MD; Patel H; Sung HJ; Roskov KE; Kohn J; Becker ML; Moghe PV
    Comb Chem High Throughput Screen; 2009 Aug; 12(7):646-55. PubMed ID: 19531022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renaissance of Aliphatic Polycarbonates: New Techniques and Biomedical Applications.
    Xu J; Feng E; Song J
    J Appl Polym Sci; 2014 Mar; 131(5):. PubMed ID: 24994939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The overwhelming use of rat models in nerve regeneration research may compromise designs of nerve guidance conduits for humans.
    Kaplan HM; Mishra P; Kohn J
    J Mater Sci Mater Med; 2015 Aug; 26(8):226. PubMed ID: 26296419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence Quenching of Tyrosine-Ag Nanoclusters by Metal Ions: Analytical and Physicochemical Assessment.
    Ungor D; Bélteki R; Horváth K; Dömötör O; Csapó E
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meniscus regeneration by 3D printing technologies: Current advances and future perspectives.
    Stocco E; Porzionato A; De Rose E; Barbon S; De Caro R; Macchi V
    J Tissue Eng; 2022; 13():20417314211065860. PubMed ID: 35096363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal Processing of a Degradable Carboxylic Acid-Functionalized Polycarbonate into Scaffolds for Tissue Engineering.
    Murthy NS; Shultz RB; Iovine CP; Kohn J
    Polym Eng Sci; 2021 Jul; 61(7):2012-2022. PubMed ID: 34421132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic Hybrid Systems for Tissue Engineering.
    Yousefzade O; Katsarava R; Puiggalí J
    Biomimetics (Basel); 2020 Oct; 5(4):. PubMed ID: 33050136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Human Dental Pulp and Endothelial Cell Seeded Tyrosine-Derived Polycarbonate Scaffolds for Robust
    Zhang W; Saxena S; Fakhrzadeh A; Rudolph S; Young S; Kohn J; Yelick PC
    Front Bioeng Biotechnol; 2020; 8():796. PubMed ID: 32766225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymeric Nanoparticles Based on Tyrosine-Modified, Low Molecular Weight Polyethylenimines for siRNA Delivery.
    Ewe A; Noske S; Karimov M; Aigner A
    Pharmaceutics; 2019 Nov; 11(11):. PubMed ID: 31726756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and thermal transitions in a biomedically relevant liquid crystalline poly(ester amide).
    Bedoui F; Murthy NS; Kohn J
    Macromolecules; 2017 Mar; 50(6):2257-2266. PubMed ID: 31686708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds.
    Ji S; Dube K; Chesterman JP; Fung SL; Liaw CY; Kohn J; Guvendiren M
    Biomater Sci; 2019 Jan; 7(2):560-570. PubMed ID: 30534726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible, Penetrating Brain Probes Enabled by Advances in Polymer Microfabrication.
    Weltman A; Yoo J; Meng E
    Micromachines (Basel); 2016 Oct; 7(10):. PubMed ID: 30404353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.