These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 12706047)

  • 1. Polyphosphoesters in drug and gene delivery.
    Zhao Z; Wang J; Mao HQ; Leong KW
    Adv Drug Deliv Rev; 2003 Apr; 55(4):483-99. PubMed ID: 12706047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in polyphosphoesters: from controlled synthesis to biomedical applications.
    Wang YC; Yuan YY; Du JZ; Yang XZ; Wang J
    Macromol Biosci; 2009 Dec; 9(12):1154-64. PubMed ID: 19924681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable poly(ester amine)s for gene delivery applications.
    Arote RB; Jere D; Jiang HL; Kim YK; Choi YJ; Cho CS
    Biomed Mater; 2009 Aug; 4(4):044102. PubMed ID: 19584426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances on biocompatible and biodegradable nanoparticles as gene carriers.
    Mokhtarzadeh A; Alibakhshi A; Yaghoobi H; Hashemi M; Hejazi M; Ramezani M
    Expert Opin Biol Ther; 2016 Jun; 16(6):771-85. PubMed ID: 26998622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyphosphoesters: New Trends in Synthesis and Drug Delivery Applications.
    Yilmaz ZE; Jérôme C
    Macromol Biosci; 2016 Dec; 16(12):1745-1761. PubMed ID: 27654308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalized PLA polymers to control loading and/or release properties of drug-loaded nanoparticles.
    Thauvin C; Schwarz B; Delie F; Allémann E
    Int J Pharm; 2018 Sep; 548(2):771-777. PubMed ID: 29104059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo degradation studies of a novel linear copolymer of lactide and ethylphosphate.
    Chaubal MV; Su G; Spicer E; Dang W; Branham KE; English JP; Zhao Z
    J Biomater Sci Polym Ed; 2003; 14(1):45-61. PubMed ID: 12635770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of cationic PLGA nanospheres as DNA carriers.
    Ravi Kumar MN; Bakowsky U; Lehr CM
    Biomaterials; 2004 May; 25(10):1771-7. PubMed ID: 14738840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(D,L-lactide-co-ethyl ethylene phosphate)s as new drug carriers.
    Wen J; Kim GJ; Leong KW
    J Control Release; 2003 Sep; 92(1-2):39-48. PubMed ID: 14499184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-viral gene delivery systems.
    Davis ME
    Curr Opin Biotechnol; 2002 Apr; 13(2):128-31. PubMed ID: 11950563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and in vitro assessment of L-lactic acid-based copolymers as prodrug and carrier for intravitreal sustained L-lactate release to reverse retinal arteriolar occlusions.
    Veurink M; Asmus L; Hennig M; Kaufmann B; Bagnewski L; Heiligenhaus A; Mendrinos E; Pournaras CJ; Gurny R; Möller M
    Eur J Pharm Sci; 2013 May; 49(2):233-40. PubMed ID: 23500039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of intracellular reduction-sensitive amphiphilic polyethyleneimine and poly(ε-caprolactone) graft copolymer for on-demand release of doxorubicin and p53 plasmid DNA.
    Davoodi P; Srinivasan MP; Wang CH
    Acta Biomater; 2016 Jul; 39():79-93. PubMed ID: 27154500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doxorubicin conjugate of poly(ethylene glycol)-block-polyphosphoester for cancer therapy.
    Sun CY; Dou S; Du JZ; Yang XZ; Li YP; Wang J
    Adv Healthc Mater; 2014 Feb; 3(2):261-72. PubMed ID: 23852934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PHB-Based Gels as Delivery Agents of Chemotherapeutics for the Effective Shrinkage of Tumors.
    Wu YL; Wang H; Qiu YK; Liow SS; Li Z; Loh XJ
    Adv Healthc Mater; 2016 Oct; 5(20):2679-2685. PubMed ID: 27594657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interplay of membrane formation and drug release in solution-cast films of polylactide polymers.
    Ma D; McHugh AJ
    Int J Pharm; 2010 Mar; 388(1-2):1-12. PubMed ID: 20025948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymeric modification and its implication in drug delivery: poly-ε-caprolactone (PCL) as a model polymer.
    Dash TK; Konkimalla VB
    Mol Pharm; 2012 Sep; 9(9):2365-79. PubMed ID: 22823097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA nano-carriers from biodegradable cationic branched polyesters are formed by a modified solvent displacement method.
    Oster CG; Wittmar M; Bakowsky U; Kissel T
    J Control Release; 2006 Apr; 111(3):371-81. PubMed ID: 16499988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale poly(4-hydroxybutyrate)-mPEG carriers for anticancer drugs delivery.
    Shah M; Ullah N; Choi MH; Yoon SC
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8416-21. PubMed ID: 25958538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecularly imprinted polymer essentials: curation of anticancer, ophthalmic, and projected gene therapy drug delivery systems.
    Tuwahatu CA; Yeung CC; Lam YW; Roy VAL
    J Control Release; 2018 Oct; 287():24-34. PubMed ID: 30110614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembling nanocomplexes from insulin and water-soluble branched polyesters, poly[(vinyl-3-(diethylamino)- propylcarbamate-co-(vinyl acetate)-co-(vinyl alcohol)]-graft- poly(L-lactic acid): a novel carrier for transmucosal delivery of peptides.
    Simon M; Wittmar M; Bakowsky U; Kissel T
    Bioconjug Chem; 2004; 15(4):841-9. PubMed ID: 15264872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.