BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

486 related articles for article (PubMed ID: 12706341)

  • 1. Binding of fatty acids facilitates oxidation of cysteine-34 and converts copper-albumin complexes from antioxidants to prooxidants.
    Gryzunov YA; Arroyo A; Vigne JL; Zhao Q; Tyurin VA; Hubel CA; Gandley RE; Vladimirov YA; Taylor RN; Kagan VE
    Arch Biochem Biophys; 2003 May; 413(1):53-66. PubMed ID: 12706341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mishandling of copper by albumin: role in redox-cycling and oxidative stress in preeclampsia plasma.
    Kagan VE; Tyurin VA; Borisenko GG; Fabisiak JP; Hubel CA; Ness RB; Gandley R; McLaughlin MK; Roberts JM
    Hypertens Pregnancy; 2001; 20(3):221-41. PubMed ID: 12044332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bifunctional anti/prooxidant potential of metallothionenin: redox signaling of copper binding and release.
    Fabisiak JP; Pearce LL; Borisenko GG; Tyhurina YY; Tyurin VA; Razzack J; Lazo JS; Pitt BR; Kagan VE
    Antioxid Redox Signal; 1999; 1(3):349-64. PubMed ID: 11229446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of cysteine and methionine residues in the antioxidant activity of human serum albumin.
    Bourdon E; Loreau N; Lagrost L; Blache D
    Free Radic Res; 2005 Jan; 39(1):15-20. PubMed ID: 15875807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper transfer from Cu-Abeta to human serum albumin inhibits aggregation, radical production and reduces Abeta toxicity.
    Perrone L; Mothes E; Vignes M; Mockel A; Figueroa C; Miquel MC; Maddelein ML; Faller P
    Chembiochem; 2010 Jan; 11(1):110-8. PubMed ID: 19937895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interplay between copper(II), human serum albumin, fatty acids, and carbonylating agent interferes with Cys 34 thiol reactivity and copper binding.
    Penezić AZ; Aćimović JM; Pavićević ID; Jovanović VB; Takić M; Mandić LM
    J Biol Inorg Chem; 2019 Feb; 24(1):61-70. PubMed ID: 30456476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidant potential of anaerobic human plasma: role of serum albumin and thiols as scavengers of carbon radicals.
    Soriani M; Pietraforte D; Minetti M
    Arch Biochem Biophys; 1994 Jul; 312(1):180-8. PubMed ID: 8031126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatty acids binding to human serum albumin: Changes of reactivity and glycation level of Cysteine-34 free thiol group with methylglyoxal.
    Pavićević ID; Jovanović VB; Takić MM; Penezić AZ; Aćimović JM; Mandić LM
    Chem Biol Interact; 2014 Dec; 224():42-50. PubMed ID: 25451573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and Affinity of Cu(I) Bound to Human Serum Albumin.
    Sendzik M; Pushie MJ; Stefaniak E; Haas KL
    Inorg Chem; 2017 Dec; 56(24):15057-15065. PubMed ID: 29166002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double edge redox-implications for the interaction between endogenous thiols and copper ions: In vitro studies.
    Carrasco-Pozo C; Aliaga ME; Olea-Azar C; Speisky H
    Bioorg Med Chem; 2008 Nov; 16(22):9795-803. PubMed ID: 18926709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox-mediated mechanisms and biological responses of copper-catalyzed reduction of the nitrite ion in vitro.
    Opländer C; Rösner J; Gombert A; Brodski A; Suvorava T; Grotheer V; van Faassen EE; Kröncke KD; Kojda G; Windolf J; Suschek CV
    Nitric Oxide; 2013 Nov; 35():152-64. PubMed ID: 24140456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acids increase the circulating levels of oxidative stress factors in mice with diet-induced obesity via redox changes of albumin.
    Yamato M; Shiba T; Yoshida M; Ide T; Seri N; Kudou W; Kinugawa S; Tsutsui H
    FEBS J; 2007 Aug; 274(15):3855-63. PubMed ID: 17617229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox regulation of copper-metallothionein.
    Fabisiak JP; Tyurin VA; Tyurina YY; Borisenko GG; Korotaeva A; Pitt BR; Lazo JS; Kagan VE
    Arch Biochem Biophys; 1999 Mar; 363(1):171-81. PubMed ID: 10049512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of oxidative/nitrosative modification of CYS(34) in human serum albumin using a fluorescence-based SDS-PAGE assay.
    Fabisiak JP; Sedlov A; Kagan VE
    Antioxid Redox Signal; 2002 Oct; 4(5):855-65. PubMed ID: 12470514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of nitric oxide on the ligand-binding activity of albumin.
    Kashiba-Iwatsuki M; Miyamoto M; Inoue M
    Arch Biochem Biophys; 1997 Sep; 345(2):237-42. PubMed ID: 9308895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox chemistry of copper-amyloid-beta: the generation of hydroxyl radical in the presence of ascorbate is linked to redox-potentials and aggregation state.
    Guilloreau L; Combalbert S; Sournia-Saquet A; Mazarguil H; Faller P
    Chembiochem; 2007 Jul; 8(11):1317-25. PubMed ID: 17577900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro interaction between homocysteine and copper ions: Potential redox implications.
    Carrasco-Pozo C; Alvarez-Lueje A; Olea-Azar C; López-Alarcón C; Speisky H
    Exp Biol Med (Maywood); 2006 Oct; 231(9):1569-75. PubMed ID: 17018882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific modification of albumin by free radicals. Reaction with copper(II) and ascorbate.
    Marx G; Chevion M
    Biochem J; 1986 Jun; 236(2):397-400. PubMed ID: 3753454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox properties of serum albumin.
    Anraku M; Chuang VT; Maruyama T; Otagiri M
    Biochim Biophys Acta; 2013 Dec; 1830(12):5465-72. PubMed ID: 23644037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxyl radical formation from Cu(II)-trolox mixtures: insights into the pro-oxidant properties of alpha-tocopherol.
    Burkitt MJ; Milne L
    FEBS Lett; 1996 Jan; 379(1):51-4. PubMed ID: 8566228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.