These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 12706727)

  • 21. Intramembrane signaling mediated by hydrogen-bonding of water and carboxyl groups in bacteriorhodopsin and rhodopsin.
    Maeda A; Kandori H; Yamazaki Y; Nishimura S; Hatanaka M; Chon YS; Sasaki J; Needleman R; Lanyi JK
    J Biochem; 1997 Mar; 121(3):399-406. PubMed ID: 9133606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monitoring the conformational changes of photoactivated rhodopsin from microseconds to seconds by transient fluorescence spectroscopy.
    Hoersch D; Otto H; Wallat I; Heyn MP
    Biochemistry; 2008 Nov; 47(44):11518-27. PubMed ID: 18847221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences.
    Balu R; Zhang H; Zukowski E; Chen JY; Markelz AG; Gregurick SK
    Biophys J; 2008 Apr; 94(8):3217-26. PubMed ID: 18199669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ca2+-dependent conformational changes in the neuronal Ca2+-sensor recoverin probed by the fluorescent dye Alexa647.
    Gensch T; Komolov KE; Senin II; Philippov PP; Koch KW
    Proteins; 2007 Feb; 66(2):492-9. PubMed ID: 17078090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process.
    Kirchberg K; Kim TY; Möller M; Skegro D; Dasara Raju G; Granzin J; Büldt G; Schlesinger R; Alexiev U
    Proc Natl Acad Sci U S A; 2011 Nov; 108(46):18690-5. PubMed ID: 22039220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface dynamics of bacteriorhodopsin as revealed by (13)C NMR studies on [(13)C]Ala-labeled proteins: detection of millisecond or microsecond motions in interhelical loops and C-terminal alpha-helix.
    Yamaguchi S; Tuzi S; Yonebayashi K; Naito A; Needleman R; Lanyi JK; Saitô H
    J Biochem; 2001 Mar; 129(3):373-82. PubMed ID: 11226876
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface-bound optical probes monitor protein translocation and surface potential changes during the bacteriorhodopsin photocycle.
    Heberle J; Dencher NA
    Proc Natl Acad Sci U S A; 1992 Jul; 89(13):5996-6000. PubMed ID: 1497755
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Equilibrium between metarhodopsin-I and metarhodopsin-II is dependent on the conformation of the third cytoplasmic loop.
    Piscitelli CL; Angel TE; Bailey BW; Hargrave P; Dratz EA; Lawrence CM
    J Biol Chem; 2006 Mar; 281(10):6813-25. PubMed ID: 16407202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-resolved site-directed spin-labeling studies of bacteriorhodopsin: loop-specific conformational changes in M.
    Mollaaghababa R; Steinhoff HJ; Hubbell WL; Khorana HG
    Biochemistry; 2000 Feb; 39(5):1120-7. PubMed ID: 10653658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange.
    Deng H; Huang L; Callender R; Ebrey T
    Biophys J; 1994 Apr; 66(4):1129-36. PubMed ID: 8038384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural dynamics of light-driven proton pumps.
    Andersson M; Malmerberg E; Westenhoff S; Katona G; Cammarata M; Wöhri AB; Johansson LC; Ewald F; Eklund M; Wulff M; Davidsson J; Neutze R
    Structure; 2009 Sep; 17(9):1265-75. PubMed ID: 19748347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vibrational coupling between helices influences the amide I infrared absorption of proteins: application to bacteriorhodopsin and rhodopsin.
    Karjalainen EL; Barth A
    J Phys Chem B; 2012 Apr; 116(15):4448-56. PubMed ID: 22435481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8.
    Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP
    J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time-resolved X-ray diffraction reveals movement of F helix of D96N bacteriorhodopsin during M-MN transition at neutral pH.
    Oka T; Yagi N; Tokunaga F; Kataoka M
    Biophys J; 2002 May; 82(5):2610-6. PubMed ID: 11964247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure determination of the fourth cytoplasmic loop and carboxyl terminal domain of bovine rhodopsin.
    Yeagle PL; Alderfer JL; Albert AD
    Mol Vis; 1996 Dec; 2():12. PubMed ID: 9238089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of the predicted secondary structure of bacteriorhodopsin. Prediction of the bovine rhodopsin secondary structure and its sequence similarity with bacteriorhodopsin.
    Nero TL; Louis WJ
    Biochem Int; 1992 Aug; 27(5):763-70. PubMed ID: 1417909
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mapping light-dependent structural changes in the cytoplasmic loop connecting helices C and D in rhodopsin: a site-directed spin labeling study.
    Farahbakhsh ZT; Ridge KD; Khorana HG; Hubbell WL
    Biochemistry; 1995 Jul; 34(27):8812-9. PubMed ID: 7612622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unraveling photoexcited conformational changes of bacteriorhodopsin by time resolved electron paramagnetic resonance spectroscopy.
    Rink T; Pfeiffer M; Oesterhelt D; Gerwert K; Steinhoff HJ
    Biophys J; 2000 Mar; 78(3):1519-30. PubMed ID: 10692336
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Covalently bound pH-indicator dyes at selected extracellular or cytoplasmic sites in bacteriorhodopsin. 2. Rotational orientation of helices D and E and kinetic correlation between M formation and proton release in bacteriorhodopsin micelles.
    Alexiev U; Marti T; Heyn MP; Khorana HG; Scherrer P
    Biochemistry; 1994 Nov; 33(46):13693-9. PubMed ID: 7947778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.