BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 12707918)

  • 1. Numerical calculation of the electroosmotic flow at the cross region in microfluidic chips.
    Jin Y; Luo GA
    Electrophoresis; 2003 Apr; 24(7-8):1242-52. PubMed ID: 12707918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroosmotic flow in capillary channels filled with nonconstant viscosity electrolytes: exact solution of the Navier-Stokes equation.
    Otevrel M; Klepárník K
    Electrophoresis; 2002 Oct; 23(20):3574-82. PubMed ID: 12412127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study and numerical estimation of current changes in electroosmotically pumped microfluidic devices.
    Rodríguez I; Chandrasekhar N
    Electrophoresis; 2005 Mar; 26(6):1114-21. PubMed ID: 15706573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-voltage driven control in electrophoresis microchips by traveling electric field.
    Fu LM; Yang RJ
    Electrophoresis; 2003 Apr; 24(7-8):1253-60. PubMed ID: 12707919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroosmotic guiding of sample flows in a laminar flow chamber.
    Besselink GA; Vulto P; Lammertink RG; Schlautmann S; van den Berg A; Olthuis W; Engbers GH; Schasfoort RB
    Electrophoresis; 2004 Nov; 25(21-22):3705-11. PubMed ID: 15565693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations.
    Maynes D; Tenny J; Webbd BW; Lee ML
    Electrophoresis; 2008 Feb; 29(3):549-60. PubMed ID: 18200632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.
    Chao K; Chen B; Wu J
    Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple injection techniques for microfluidic sample handling.
    Fu LM; Yang RJ; Lee GB; Pan YJ
    Electrophoresis; 2003 Sep; 24(17):3026-32. PubMed ID: 12973806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels.
    Tang G; Yan D; Yang C; Gong H; Chai JC; Lam YC
    Electrophoresis; 2006 Feb; 27(3):628-39. PubMed ID: 16456892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coated microfluidic devices for improved chiral separations in microchip electrophoresis.
    Ludwig M; Belder D
    Electrophoresis; 2003 Aug; 24(15):2481-6. PubMed ID: 12900859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field-effect flow control in a polydimethylsiloxane-based microfluidic system.
    Buch JS; Wang PC; DeVoe DL; Lee CS
    Electrophoresis; 2001 Oct; 22(18):3902-7. PubMed ID: 11700719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of geometry effects on band spreading of microchip electrophoresis.
    Fu LM; Yang RJ; Lee GB
    Electrophoresis; 2002 Feb; 23(4):602-12. PubMed ID: 11870772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution DNA separation in microcapillary electrophoresis chips utilizing double-L injection techniques.
    Fu LM; Lin CH
    Electrophoresis; 2004 Nov; 25(21-22):3652-9. PubMed ID: 15565701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical modeling of Joule heating-induced temperature gradient focusing in microfluidic channels.
    Tang G; Yang C
    Electrophoresis; 2008 Mar; 29(5):1006-12. PubMed ID: 18306182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis.
    Ghosal S
    Electrophoresis; 2004 Jan; 25(2):214-28. PubMed ID: 14743475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of an interface to allow microfluidic electrophoresis chips to drink from the fire hose of the external environment.
    Attiya S; Jemere AB; Tang T; Fitzpatrick G; Seiler K; Chiem N; Harrison DJ
    Electrophoresis; 2001 Jan; 22(2):318-27. PubMed ID: 11288900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the electroosmotic flow as a means to propel the mobile phase in capillary electrochromatography in view of further miniaturization of capillary electrochromatography systems.
    Szekely L; Freitag R
    Electrophoresis; 2005 May; 26(10):1928-39. PubMed ID: 15832304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High performance microfluidic capillary electrophoresis devices.
    Fu LM; Leong JC; Lin CF; Tai CH; Tsai CH
    Biomed Microdevices; 2007 Jun; 9(3):405-12. PubMed ID: 17487587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remotely powered distributed microfluidic pumps and mixers based on miniature diodes.
    Chang ST; Beaumont E; Petsev DN; Velev OD
    Lab Chip; 2008 Jan; 8(1):117-24. PubMed ID: 18094769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.