These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 127085)
21. Localisation of adenine nucleotide-binding sites on beef-heart mitochondrial ATPase by photolabelling with 8-azido-ADP and 8-azido-ATP. Wagenvoord RJ; van der Kraan I; Kemp A Biochim Biophys Acta; 1979 Oct; 548(1):85-95. PubMed ID: 158387 [TBL] [Abstract][Full Text] [Related]
22. Rat liver ATP synthase. Relationship of the unique substructure of the F1 moiety to its nucleotide binding properties, enzymatic states, and crystalline form. Pedersen PL; Hullihen J; Bianchet M; Amzel LM; Lebowitz MS J Biol Chem; 1995 Jan; 270(4):1775-84. PubMed ID: 7829514 [TBL] [Abstract][Full Text] [Related]
23. Further investigations on the inorganic phosphate binding site of beef heart mitochondrial F1-ATPase. Pougeois R; Lauquin GJ Biochemistry; 1985 Feb; 24(4):1020-4. PubMed ID: 2859884 [TBL] [Abstract][Full Text] [Related]
24. Mechanism of activation of bicarbonate ion by mitochondrial carbamoyl-phosphate synthetase: formation of enzyme-bound adenosine diphosphate from the adenosine triphosphate that yields inorganic phosphate. Rubio V; Britton HG; Grisolia S; Sproat BS; Lowe G Biochemistry; 1981 Mar; 20(7):1969-74. PubMed ID: 6261808 [TBL] [Abstract][Full Text] [Related]
25. Ligand binding studies of the F1 moiety of rat liver ATP synthase: implications about the enzyme's structure and mechanism. Williams N; Hullihen J; Pedersen PL Biochemistry; 1987 Jan; 26(1):162-9. PubMed ID: 2881576 [TBL] [Abstract][Full Text] [Related]
26. Adenosine triphosphatase from rat liver mitochondria: separate sites involved in ATP hydrolysis and in the reversible, high affinity binding of ADP. Pedersen PL Biochem Biophys Res Commun; 1975 May; 64(2):610-6. PubMed ID: 125085 [No Abstract] [Full Text] [Related]
27. Binding of nucleotides to purified coupling factor-latent ATPase from Mycobacterium phlei. Lee SH; Kalra VK; Ritz CJ; Brodie AF J Biol Chem; 1977 Feb; 252(3):1084-91. PubMed ID: 14131 [TBL] [Abstract][Full Text] [Related]
28. Mechanistic studies of glutamine synthetase from Escherichia coli. An integrated mechanism for biosynthesis, transferase, ATPase reaction. Rhee SG; Chock PB; Stadtman ER Biochimie; 1976; 58(1-2):35-49. PubMed ID: 8153 [TBL] [Abstract][Full Text] [Related]
29. Polynucleotide phosphorylase and mitochondrial ATP synthase mediate reduction of arsenate to the more toxic arsenite by forming arsenylated analogues of ADP and ATP. Németi B; Regonesi ME; Tortora P; Gregus Z Toxicol Sci; 2010 Oct; 117(2):270-81. PubMed ID: 20457661 [TBL] [Abstract][Full Text] [Related]
31. Membrane bound and soluble adenosine triphosphatase of Escherichia coli K 12. Kinetic properties of the basal and trypsin-stimulated activities. Carreira J; Muñoz E Mol Cell Biochem; 1975 Nov; 9(2):85-95. PubMed ID: 127930 [TBL] [Abstract][Full Text] [Related]
32. Reaction of cardiac myosin with a purine disulfide analog of adenosine triphosphate. I. Kinetics of inactivation and binding of adenylyl imidodiphosphate. Greene LE; Yount RG J Biol Chem; 1977 Mar; 252(5):1673-80. PubMed ID: 138683 [TBL] [Abstract][Full Text] [Related]
33. Regulation of the synthesis and hydrolysis of ATP by mitochondrial ATPase. Role of Mg2+. Gómez-Puyou A; Ayala G; Muller U; Tuena de Gómez-Puyou M J Biol Chem; 1983 Nov; 258(22):13673-9. PubMed ID: 6227614 [TBL] [Abstract][Full Text] [Related]
34. Involvement of ecto-ATPase as an ATP receptor in the stimulatory effect of extracellular ATP on NO release in bovine aorta endothelial cells. Yagi K; Nishino I; Eguchi M; Kitagawa M; Miura Y; Mizoguchi T Biochem Biophys Res Commun; 1994 Sep; 203(2):1237-43. PubMed ID: 7522443 [TBL] [Abstract][Full Text] [Related]
35. Four tight nucleotide binding sites of chloroplast coupling factor 1. Shapiro AB; Huber AH; McCarty RE J Biol Chem; 1991 Mar; 266(7):4194-200. PubMed ID: 1825653 [TBL] [Abstract][Full Text] [Related]
36. Mitochondrial adenosine triphosphatase from human placenta--effects of adenylyl and guanylyl imidodiphosphate. Aleksandrowicz Z Int J Biochem; 1985; 17(2):229-34. PubMed ID: 3159604 [TBL] [Abstract][Full Text] [Related]
37. Antibiotic inhibitors of mitochondrial ATP synthesis. Lardy H; Reed P; Lin CH Fed Proc; 1975 Jul; 34(8):1707-10. PubMed ID: 124269 [TBL] [Abstract][Full Text] [Related]
38. The equilibrium between different conformations of the unphosphorylated sodium pump: effects of ATP and of potassium ions, and their relevance to potassium transport. Beaugé LA; Glynn IM J Physiol; 1980 Feb; 299():367-83. PubMed ID: 6247481 [TBL] [Abstract][Full Text] [Related]
39. Control of beef heart submitochondrial particle-catalyzed Pi goes to and comes from ATP exchange by nucleotides and the ATPase inhibitor protein. Krull KW; Schuster SM J Biol Chem; 1981 Jul; 256(13):6641-5. PubMed ID: 6453869 [TBL] [Abstract][Full Text] [Related]
40. Effects of adenosine triphosphate on N-ethylmaleimide-induced modification of 30S dynein from Tetrahymena cilia. Shimizu T; Kimura I J Biochem; 1977 Jul; 82(1):165-73. PubMed ID: 19451 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]