These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 12708770)

  • 21. Gaseous microemboli detection in a simulated pediatric CPB circuit using a novel ultrasound system.
    Miller A; Wang S; Myers JL; Undar A
    ASAIO J; 2008; 54(5):504-8. PubMed ID: 18812742
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of four pediatric cardiopulmonary bypass circuits in terms of perfusion quality and capturing gaseous microemboli.
    Mathis RK; Lin J; Dogal NM; Qiu F; Kunselman A; Wang S; Ündar A
    Perfusion; 2012 Nov; 27(6):470-9. PubMed ID: 22751383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vacuum-assisted venous drainage: to air or not to air, that is the question. Has the bubble burst?
    Willcox TW
    J Extra Corpor Technol; 2002 Mar; 34(1):24-8. PubMed ID: 11911625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pumping O2 with no N2: An Overview of Hollow Fiber Membrane Oxygenators with Integrated Arterial Filters.
    Liu A; Sun Z; Liu Q; Zhu N; Wang S
    Curr Top Med Chem; 2020; 20(1):78-85. PubMed ID: 31820691
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Can the oxygenator screen filter reduce gaseous microemboli?
    Johagen D; Appelblad M; Svenmarker S
    J Extra Corpor Technol; 2014 Mar; 46(1):60-6. PubMed ID: 24779120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How effective are cardiopulmonary bypass circuits at removing gaseous microemboli?
    Jones TJ; Deal DD; Vernon JC; Blackburn N; Stump DA
    J Extra Corpor Technol; 2002 Mar; 34(1):34-9. PubMed ID: 11911627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of Capiox RX25 and Quadrox-i Adult Hollow Fiber Membrane Oxygenators in a Simulated Cardiopulmonary Bypass Circuit.
    Wang S; Kunselman AR; Ündar A
    Artif Organs; 2016 May; 40(5):E69-78. PubMed ID: 27168381
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Application of dynamic bubble trap in coronary artery bypass with cardiopulmonary bypass: an initial study].
    Wu M; Chen RK; Cremer J
    Zhonghua Yi Xue Za Zhi; 2004 Dec; 84(23):1986-9. PubMed ID: 15730812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of a dynamic bubble trap in the arterial line reduces microbubbles during cardiopulmonary bypass and microembolic signals in the middle cerebral artery.
    Perthel M; Kseibi S; Bendisch A; Laas J
    Perfusion; 2005 May; 20(3):151-6. PubMed ID: 16038387
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Blood temperature management and gaseous microemboli creation: an in-vitro analysis.
    Sleep J; Syhre I; Evans E
    J Extra Corpor Technol; 2010 Sep; 42(3):219-22. PubMed ID: 21114225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arterial line filters ranked for gaseous micro-emboli separation performance: an in vitro study.
    Riley JB
    J Extra Corpor Technol; 2008 Mar; 40(1):21-6. PubMed ID: 18389662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro and in vivo evaluation of Dideco's paediatric cardiopulmonary circuit for neonates weighing less than five kilograms.
    Thiara AS; Eggereide V; Pedersen T; Lindberg H; Fiane AE
    Perfusion; 2010 Jul; 25(4):229-35. PubMed ID: 20576728
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microemboli detection on extracorporeal bypass circuits.
    Lynch JE; Riley JB
    Perfusion; 2008 Jan; 23(1):23-32. PubMed ID: 18788214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops.
    Guan Y; Palanzo D; Kunselman A; Undar A
    Artif Organs; 2009 Nov; 33(11):1037-43. PubMed ID: 19874280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clinical evaluation of the air removal characteristics of an oxygenator with integrated arterial filter in a minimized extracorporeal circuit.
    Stehouwer MC; Boers C; de Vroege R; C Kelder J; Yilmaz A; Bruins P
    Int J Artif Organs; 2011 Apr; 34(4):374-82. PubMed ID: 21534248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of two different blood pumps on delivery of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated infant CPB model.
    Wang S; Kunselman AR; Myers JL; Undar A
    ASAIO J; 2008; 54(5):538-41. PubMed ID: 18812749
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gaseous microemboli in a pediatric bypass circuit with an unprimed venous line: an in vitro study.
    Hudacko A; Sievert A; Sistino J
    J Extra Corpor Technol; 2009 Sep; 41(3):166-71. PubMed ID: 19806800
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clinical evaluation of new generation oxygenators with integrated arterial line filters for cardiopulmonary bypass.
    Onorati F; Santini F; Raffin F; Menon T; Graziani MS; Chiominto B; Milano A; Faggian G; Mazzucco A
    Artif Organs; 2012 Oct; 36(10):875-85. PubMed ID: 22803968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An in vitro comparison of the ability of three commonly used pediatric cardiopulmonary bypass circuits to filter gaseous microemboli.
    Melchior RW; Rosenthal T; Glatz AC
    Perfusion; 2010 Jul; 25(4):255-63; discussion 265-6. PubMed ID: 20566585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficiency of an air filter at the drainage site in a closed circuit with a centrifugal blood pump: an in vitro study.
    Mitsumaru A; Yozu R; Matayoshi T; Morita M; Shin H; Tsutsumi K; Iino Y; Kawada S
    ASAIO J; 2001; 47(6):692-5. PubMed ID: 11730213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.