These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12708867)

  • 1. Self-assembly of a tripodal pseudorotaxane on the surface of a titanium dioxide nanoparticle.
    Long B; Nikitin K; Fitzmaurice D
    J Am Chem Soc; 2003 Apr; 125(17):5152-60. PubMed ID: 12708867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly of an electronically switchable rotaxane on the surface of a titanium dioxide nanoparticle.
    Long B; Nikitin K; Fitzmaurice D
    J Am Chem Soc; 2003 Dec; 125(50):15490-8. PubMed ID: 14664595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tripodal [2]rotaxane on the surface of gold.
    Nikitin K; Lestini E; Lazzari M; Altobello S; Fitzmaurice D
    Langmuir; 2007 Nov; 23(24):12147-53. PubMed ID: 17963409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer and switching in rigid [2]rotaxanes adsorbed on TiO2 nanoparticles.
    Lestini E; Nikitin K; Stolarczyk JK; Fitzmaurice D
    Chemphyschem; 2012 Feb; 13(3):797-810. PubMed ID: 22287425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viologen-calix[6]arene pseudorotaxanes. Ion-pair recognition and threading/dethreading molecular motions.
    Credi A; Dumas S; Silvi S; Venturi M; Arduini A; Pochini A; Secchi A
    J Org Chem; 2004 Sep; 69(18):5881-7. PubMed ID: 15373473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembled heterosupramolecular visible light photocatalyst consisting of gold nanoparticle-loaded titanium(IV) dioxide and surfactant.
    Naya S; Inoue A; Tada H
    J Am Chem Soc; 2010 May; 132(18):6292-3. PubMed ID: 20397694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of a double calix[6]arene pseudorotaxane in oriented channels.
    Arduini A; Credi A; Faimani G; Massera C; Pochini A; Secchi A; Semeraro M; Silvi S; Ugozzoli F
    Chemistry; 2008; 14(1):98-106. PubMed ID: 17899561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introducing negative charges into bis-p-phenylene crown ethers: a study of bipyridinium-based [2]pseudorotaxanes and [2]rotaxanes.
    Lestini E; Nikitin K; Müller-Bunz H; Fitzmaurice D
    Chemistry; 2008; 14(4):1095-106. PubMed ID: 18058954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [2]Rotaxanes containing pyridinium-phosphonium axles and 24-crown-8 ether wheels.
    Georges N; Loeb SJ; Tiburcio J; Wisner JA
    Org Biomol Chem; 2004 Oct; 2(19):2751-6. PubMed ID: 15455146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A supramolecular poly[3]pseudorotaxane by self-assembly of a homoditopic cylindrical bis(crown ether) host and a bisparaquat derivative.
    Huang F; Gibson HW
    Chem Commun (Camb); 2005 Apr; (13):1696-8. PubMed ID: 15791302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterosupramolecular chemistry: programmed pseudorotaxane assembly at the surface of a nanocrystal.
    Fitzmaurice D; Rao SN; Preece JA; Stoddart JF; Wenger S; Zaccheroni N
    Angew Chem Int Ed Engl; 1999; 38(8):1147-50. PubMed ID: 25138525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative conformational study of redox-active [2]rotaxanes, part 2: Switching in flexible and rigid bistable [2]rotaxanes.
    Nikitin K; Lestini E; Stolarczyk JK; Müller-Bunz H; Fitzmaurice D
    Chemistry; 2008; 14(4):1117-28. PubMed ID: 18041797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [3]Pseudorotaxane-like complexes formed between bipyridinium dications and bis-p-xylyl[26]crown-6.
    Cheng PN; Lin CF; Liu YH; Lai CC; Peng SM; Chiu SH
    Org Lett; 2006 Feb; 8(3):435-8. PubMed ID: 16435853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination-driven self-assembly of cavity-cored multiple crown ether derivatives and poly[2]pseudorotaxanes.
    Ghosh K; Yang HB; Northrop BH; Lyndon MM; Zheng YR; Muddiman DC; Stang PJ
    J Am Chem Soc; 2008 Apr; 130(15):5320-34. PubMed ID: 18341280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular pseudorotaxane polymers from complementary pairs of homoditopic molecules.
    Gibson HW; Yamaguchi N; Jones JW
    J Am Chem Soc; 2003 Mar; 125(12):3522-33. PubMed ID: 12643714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterosupramolecular Chemistry: Self-Assembly of an Electron Donor (TiO2 Nanocrystallite)-Acceptor (Viologen) Complex.
    Cusack L; Rao SN; Fitzmaurice D
    Chemistry; 1997 Feb; 3(2):202-7. PubMed ID: 24022948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nature of electron transport by pyridine-based tripodal anchors: potential for robust and conductive single-molecule junctions with gold electrodes.
    Ie Y; Hirose T; Nakamura H; Kiguchi M; Takagi N; Kawai M; Aso Y
    J Am Chem Soc; 2011 Mar; 133(9):3014-22. PubMed ID: 21309569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative conformational study of redox-active [2]rotaxanes, part 1: Methodology and application to a model [2]rotaxane.
    Altobello S; Nikitin K; Stolarczyk JK; Lestini E; Fitzmaurice D
    Chemistry; 2008; 14(4):1107-16. PubMed ID: 18000924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic coatings for environmental applications.
    Allen NS; Edge M; Sandoval G; Verran J; Stratton J; Maltby J
    Photochem Photobiol; 2005; 81(2):279-90. PubMed ID: 15279507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viologen-templated arrays of cucurbit[7]uril-modified iron-oxide nanoparticles.
    Benyettou F; Nchimi-Nono K; Jouiad M; Lalatonne Y; Milosevic I; Motte L; Olsen JC; Saleh N; Trabolsi A
    Chemistry; 2015 Mar; 21(12):4607-13. PubMed ID: 25582844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.