BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 12708868)

  • 1. Lanthanum strontium manganite/yttria-stabilized zirconia nanocomposites derived from a surfactant assisted, co-assembled mesoporous phase.
    Mamak M; Métraux GS; Petrov S; Coombs N; Ozin GA; Green MA
    J Am Chem Soc; 2003 Apr; 125(17):5161-75. PubMed ID: 12708868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of chemical interactions between stabilized zirconia and perovskites.
    Stochniol G; Broel S; Naoumidis A; Nickel H
    Anal Bioanal Chem; 1996 Jun; 355(5-6):697-700. PubMed ID: 15045345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of interlayer on structure and performance of anode-supported SOFC single cells.
    Eom TW; Yang HK; Kim KH; Yoon HH; Kim JS; Park SJ
    Ultramicroscopy; 2008 Sep; 108(10):1283-7. PubMed ID: 18571861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of thermally stable zirconia-based mesoporous materials via a facile post-treatment.
    Chen SY; Jang LY; Cheng S
    J Phys Chem B; 2006 Jun; 110(24):11761-71. PubMed ID: 16800475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.
    Khor KA; Gu YW; Pan D; Cheang P
    Biomaterials; 2004 Aug; 25(18):4009-17. PubMed ID: 15046891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and compositional characterization of yttria-stabilized zirconia: evidence of surface-stabilized, low-valence metal species.
    Pomfret MB; Stoltz C; Varughese B; Walker RA
    Anal Chem; 2005 Mar; 77(6):1791-5. PubMed ID: 15762587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure tailoring of the nickel oxide-Yttria-stabilized zirconia hollow fibers toward high-performance microtubular solid oxide fuel cells.
    Liu T; Ren C; Fang S; Wang Y; Chen F
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18853-60. PubMed ID: 25313919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel microstructural strategies to enhance the electrochemical performance of La0.8Sr0.2MnO3-δ cathodes.
    Dos Santos-Gómez L; Losilla ER; Martín F; Ramos-Barrado JR; Marrero-López D
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7197-205. PubMed ID: 25793738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Stable Sr-Free Cobaltite-Based Perovskite Cathodes Directly Assembled on a Barrier-Layer-Free Y
    Ai N; Li N; Rickard WD; Cheng Y; Chen K; Jiang SP
    ChemSusChem; 2017 Mar; 10(5):993-1003. PubMed ID: 28220997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun La0.8Sr0.2MnO₃ nanofibers for a high-temperature electrochemical carbon monoxide sensor.
    Zhi M; Koneru A; Yang F; Manivannan A; Li J; Wu N
    Nanotechnology; 2012 Aug; 23(30):305501. PubMed ID: 22751138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ study of electrochemical activation and surface segregation of the SOFC electrode material La0.75Sr0.25Cr0.5Mn0.5O(3±δ).
    Huber AK; Falk M; Rohnke M; Luerssen B; Gregoratti L; Amati M; Janek J
    Phys Chem Chem Phys; 2012 Jan; 14(2):751-8. PubMed ID: 22116198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of ordered hexagonal and cubic mesoporous tin oxides via mixed-surfactant templates route.
    Wang Y; Ma C; Sun X; Li H
    J Colloid Interface Sci; 2005 Jun; 286(2):627-31. PubMed ID: 15897081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A redox-stable efficient anode for solid-oxide fuel cells.
    Tao S; Irvine JT
    Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support.
    Panthi D; Tsutsumi A
    Sci Rep; 2014 Aug; 4():5754. PubMed ID: 25169166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of proton-conducting Perovskite-type into fluorite-type fast oxide ion electrolytes using a CO2 capture technique and their electrical properties.
    Trobec F; Thangadurai V
    Inorg Chem; 2008 Oct; 47(19):8972-84. PubMed ID: 18707095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulation of yttria-stabilized zirconia (YSZ) crystalline and amorphous solids.
    Lau KC; Dunlap BI
    J Phys Condens Matter; 2011 Jan; 23(3):035401. PubMed ID: 21406863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational design of lower-temperature solid oxide fuel cell cathodes via nanotailoring of co-assembled composite structures.
    Lee KT; Lidie AA; Yoon HS; Wachsman ED
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13463-7. PubMed ID: 25287642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology and composition of spray-flame-made yttria-stabilized zirconia nanoparticles.
    Jossen R; Mueller R; Pratsinis SE; Watson M; Kamal Akhtar M
    Nanotechnology; 2005 Jul; 16(7):S609-17. PubMed ID: 21727483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colloidal Processing of Y
    Recio P; Alcázar C; Moreno R
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Temperature Fabrication of Nanostructured Yttria-Stabilized-Zirconia (YSZ) Scaffolds by In Situ Carbon Templating Xerogels.
    Muhoza SP; Cottam MA; Gross MD
    J Vis Exp; 2017 Apr; (122):. PubMed ID: 28447983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.