BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 12709425)

  • 1. Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato.
    Bereczky Z; Wang HY; Schubert V; Ganal M; Bauer P
    J Biol Chem; 2003 Jul; 278(27):24697-704. PubMed ID: 12709425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants.
    Eckhardt U; Mas Marques A; Buckhout TJ
    Plant Mol Biol; 2001 Mar; 45(4):437-48. PubMed ID: 11352462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of pH and nitrogen forms on expression profiles of genes involved in iron homeostasis in tomato.
    Zhao T; Ling HQ
    Plant Cell Environ; 2007 Apr; 30(4):518-27. PubMed ID: 17324237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SlbHLH068 interacts with FER to regulate the iron-deficiency response in tomato.
    Du J; Huang Z; Wang B; Sun H; Chen C; Ling HQ; Wu H
    Ann Bot; 2015 Jul; 116(1):23-34. PubMed ID: 26070639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots.
    Ling HQ; Bauer P; Bereczky Z; Keller B; Ganal M
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13938-43. PubMed ID: 12370409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress.
    Ouziad F; Hildebrandt U; Schmelzer E; Bothe H
    J Plant Physiol; 2005 Jun; 162(6):634-49. PubMed ID: 16008086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots.
    Graziano M; Lamattina L
    Plant J; 2007 Dec; 52(5):949-60. PubMed ID: 17892445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron-mediated control of the basic helix-loop-helix protein FER, a regulator of iron uptake in tomato.
    Brumbarova T; Bauer P
    Plant Physiol; 2005 Mar; 137(3):1018-26. PubMed ID: 15695640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato.
    Li L; Cheng X; Ling HQ
    Plant Mol Biol; 2004 Jan; 54(1):125-36. PubMed ID: 15159639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulphur deprivation limits Fe-deficiency responses in tomato plants.
    Zuchi S; Cesco S; Varanini Z; Pinton R; Astolfi S
    Planta; 2009 Jun; 230(1):85-94. PubMed ID: 19350269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethylene could influence ferric reductase, iron transporter, and H+-ATPase gene expression by affecting FER (or FER-like) gene activity.
    Lucena C; Waters BM; Romera FJ; García MJ; Morales M; Alcántara E; Pérez-Vicente R
    J Exp Bot; 2006; 57(15):4145-54. PubMed ID: 17085755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A proteomic study showing differential regulation of stress, redox regulation and peroxidase proteins by iron supply and the transcription factor FER.
    Brumbarova T; Matros A; Mock HP; Bauer P
    Plant J; 2008 Apr; 54(2):321-34. PubMed ID: 18221364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants.
    Yuan YX; Zhang J; Wang DW; Ling HQ
    Cell Res; 2005 Aug; 15(8):613-21. PubMed ID: 16117851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants.
    Luo BF; Du ST; Lu KX; Liu WJ; Lin XY; Jin CW
    J Exp Bot; 2012 May; 63(8):3127-36. PubMed ID: 22378950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic analysis of two tomato mutants affected in the regulation of iron metabolism.
    Ling HQ; Pich A; Scholz G; Ganal MW
    Mol Gen Genet; 1996 Aug; 252(1-2):87-92. PubMed ID: 8804407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato.
    Jin CW; Du ST; Chen WW; Li GX; Zhang YS; Zheng SJ
    Plant Physiol; 2009 May; 150(1):272-80. PubMed ID: 19329565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of sequence, map position, and gene expression reveals conserved essential genes for iron uptake in Arabidopsis and tomato.
    Bauer P; Thiel T; Klatte M; Bereczky Z; Brumbarova T; Hell R; Grosse I
    Plant Physiol; 2004 Dec; 136(4):4169-83. PubMed ID: 15531708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport.
    Kaiser BN; Moreau S; Castelli J; Thomson R; Lambert A; Bogliolo S; Puppo A; Day DA
    Plant J; 2003 Aug; 35(3):295-304. PubMed ID: 12887581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering high Zn in tomato shoots through expression of AtHMA4 involves tissue-specific modification of endogenous genes.
    Kendziorek M; Klimecka M; Barabasz A; Borg S; Rudzka J; Szczęsny P; Antosiewicz DM
    BMC Genomics; 2016 Aug; 17(1):625. PubMed ID: 27519859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Root-to-shoot iron partitioning in Arabidopsis requires IRON-REGULATED TRANSPORTER1 (IRT1) protein but not its iron(II) transport function.
    Quintana J; Bernal M; Scholle M; Holländer-Czytko H; Nguyen NT; Piotrowski M; Mendoza-Cózatl DG; Haydon MJ; Krämer U
    Plant J; 2022 Feb; 109(4):992-1013. PubMed ID: 34839543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.