BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 12709493)

  • 1. Contribution of C3 carboxylation to the circadian rhythm of carbon dioxide uptake in a Crassulacean acid metabolism plant Kalanchoë daigremontiana.
    Wyka TP; Lüttge UE
    J Exp Bot; 2003 May; 54(386):1471-9. PubMed ID: 12709493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perturbations of malate accumulation and the endogenous rhythms of gas exchange in the Crassulacean acid metabolism plant Kalanchoë daigremontiana: testing the tonoplast-as-oscillator model.
    Wyka TP; Bohn A; Duarte HM; Kaiser F; Lüttge UE
    Planta; 2004 Aug; 219(4):705-13. PubMed ID: 15127301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating diel starch metabolism with the circadian and environmental regulation of Crassulacean acid metabolism in Mesembryanthemum crystallinum.
    Dodd AN; Griffiths H; Taybi T; Cushman JC; Borland AM
    Planta; 2003 Mar; 216(5):789-97. PubMed ID: 12624766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of carbon fixed by Rubisco and PEPC to phloem export in the Crassulacean acid metabolism plant Kalanchoe daigremontiana.
    Wild B; Wanek W; Postl W; Richter A
    J Exp Bot; 2010 Mar; 61(5):1375-83. PubMed ID: 20159885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tansley Review No. 37 Circadian rhythms: their origin and control.
    Wilkins MB
    New Phytol; 1992 Jul; 121(3):347-375. PubMed ID: 33874151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redundancy of stomatal control for the circadian photosynthetic rhythm in Kalanchoë daigremontiana Hamet et Perrier.
    Wyka TP; Duarte HM; Lüttge UE
    Plant Biol (Stuttg); 2005 Mar; 7(2):176-81. PubMed ID: 15822013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO(2)-concentrating: consequences in crassulacean acid metabolism.
    Lüttge U
    J Exp Bot; 2002 Nov; 53(378):2131-42. PubMed ID: 12379779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competing carboxylases: circadian and metabolic regulation of Rubisco in C3 and CAM Mesembryanthemum crystallinum L.
    Davies BN; Griffiths H
    Plant Cell Environ; 2012 Jul; 35(7):1211-20. PubMed ID: 22239463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The co-ordination of central plant metabolism by the circadian clock.
    Hartwell J
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):945-8. PubMed ID: 16246017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of rhythmic subsystems in the circadian cycle of crassulacean acid metabolism under thermoperiodic perturbations.
    Bohn A; Hinderlich S; Hütt MT; Kaiser F; Lüttge U
    Biol Chem; 2003 May; 384(5):721-8. PubMed ID: 12817468
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Boxall SF; Kadu N; Dever LV; Kneřová J; Waller JL; Gould PJD; Hartwell J
    Plant Cell; 2020 Apr; 32(4):1136-1160. PubMed ID: 32051209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Mechanism of Reinitiation of Endogenous Crassulacean Acid Metabolism Rhythm by Temperature Changes.
    Grams T; Borland AM; Roberts A; Griffiths H; Beck F; Luttge U
    Plant Physiol; 1997 Apr; 113(4):1309-1317. PubMed ID: 12223675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaf succulence determines the interplay between carboxylase systems and light use during Crassulacean acid metabolism in Kalanchöe species.
    Griffiths H; Robe WE; Girnus J; Maxwell K
    J Exp Bot; 2008; 59(7):1851-61. PubMed ID: 18408219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transgenic perturbation of the decarboxylation phase of Crassulacean acid metabolism alters physiology and metabolism but has only a small effect on growth.
    Dever LV; Boxall SF; Kneřová J; Hartwell J
    Plant Physiol; 2015 Jan; 167(1):44-59. PubMed ID: 25378692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stomatal responses to CO2 during a diel Crassulacean acid metabolism cycle in Kalanchoe daigremontiana and Kalanchoe pinnata.
    von Caemmerer S; Griffiths H
    Plant Cell Environ; 2009 May; 32(5):567-76. PubMed ID: 19210641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crassulacean acid metabolism species differ in the contribution of C
    van Tongerlo E; Trouwborst G; Hogewoning SW; van Ieperen W; Dieleman JA; Marcelis LFM
    Physiol Plant; 2021 May; 172(1):134-145. PubMed ID: 33305855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study on the regulation of C(3) and C (4) carboxylation processes in the constitutive crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana and the C(3)-CAM intermediate Clusia minor.
    Borland AM; Griffiths H
    Planta; 1997 Mar; 201(3):368-78. PubMed ID: 19343414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of a crassulacean acid-like metabolism in the C(4) succulent plant, Portulaca oleracea L: study of enzymes involved in carbon fixation and carbohydrate metabolism.
    Lara MV; Drincovich MF; Andreo CS
    Plant Cell Physiol; 2004 May; 45(5):618-26. PubMed ID: 15169944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bundle sheath diffusive resistance to CO(2) and effectiveness of C(4) photosynthesis and refixation of photorespired CO(2) in a C(4) cycle mutant and wild-type Amaranthus edulis.
    Kiirats O; Lea PJ; Franceschi VR; Edwards GE
    Plant Physiol; 2002 Oct; 130(2):964-76. PubMed ID: 12376660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological responses of the CAM epiphyte Tillandsia usneoides L. (Bromeliaceae) to variations in light and water supply.
    Haslam R; Borland A; Maxwell K; Griffiths H
    J Plant Physiol; 2003 Jun; 160(6):627-34. PubMed ID: 12872484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.