BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 12710016)

  • 1. Persistent and anatomically selective reduction in prefrontal cortical dopamine metabolism after repeated, intermittent cannabinoid administration to rats.
    Verrico CD; Jentsch JD; Roth RH
    Synapse; 2003 Jul; 49(1):61-6. PubMed ID: 12710016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeated exposure to delta 9-tetrahydrocannabinol reduces prefrontal cortical dopamine metabolism in the rat.
    Jentsch JD; Verrico CD; Le D; Roth RH
    Neurosci Lett; 1998 May; 246(3):169-72. PubMed ID: 9792619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cannabinoids inhibit excitatory inputs to neurons in the shell of the nucleus accumbens: an in vivo electrophysiological study.
    Pistis M; Muntoni AL; Pillolla G; Gessa GL
    Eur J Neurosci; 2002 Jun; 15(11):1795-802. PubMed ID: 12081659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Individual differences in the effects of cannabinoids on motor activity, dopaminergic activity and DARPP-32 phosphorylation in distinct regions of the brain.
    Polissidis A; Chouliara O; Galanopoulos A; Rentesi G; Dosi M; Hyphantis T; Marselos M; Papadopoulou-Daifoti Z; Nomikos GG; Spyraki C; Tzavara ET; Antoniou K
    Int J Neuropsychopharmacol; 2010 Oct; 13(9):1175-91. PubMed ID: 19941698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids.
    Diana M; Melis M; Gessa GL
    Eur J Neurosci; 1998 Sep; 10(9):2825-30. PubMed ID: 9758152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systemic, but not local, administration of cannabinoid CB1 receptor agonists modulate prefrontal cortical acetylcholine efflux in the rat.
    Verrico CD; Jentsch JD; Dazzi L; Roth RH
    Synapse; 2003 Jun; 48(4):178-83. PubMed ID: 12687636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repeated administration of a synthetic cannabinoid receptor agonist differentially affects cortical and accumbal neuronal morphology in adolescent and adult rats.
    Carvalho AF; Reyes BA; Ramalhosa F; Sousa N; Van Bockstaele EJ
    Brain Struct Funct; 2016 Jan; 221(1):407-19. PubMed ID: 25348266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring extracellular dopamine in the rat nucleus accumbens shell and core during acquisition and maintenance of intravenous WIN 55,212-2 self-administration.
    Lecca D; Cacciapaglia F; Valentini V; Di Chiara G
    Psychopharmacology (Berl); 2006 Sep; 188(1):63-74. PubMed ID: 16850116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adolescent Δ(9)-Tetrahydrocannabinol Exposure Alters WIN55,212-2 Self-Administration in Adult Rats.
    Scherma M; Dessì C; Muntoni AL; Lecca S; Satta V; Luchicchi A; Pistis M; Panlilio LV; Fattore L; Goldberg SR; Fratta W; Fadda P
    Neuropsychopharmacology; 2016 Apr; 41(5):1416-26. PubMed ID: 26388146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cannabinoid self-administration increases dopamine release in the nucleus accumbens.
    Fadda P; Scherma M; Spano MS; Salis P; Melis V; Fattore L; Fratta W
    Neuroreport; 2006 Oct; 17(15):1629-32. PubMed ID: 17001282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cannabinoid receptor and WIN-55,212-2-stimulated [35S]GTP gamma S binding and cannabinoid receptor mRNA levels in the basal ganglia and the cerebellum of adult male rats chronically exposed to delta 9-tetrahydrocannabinol.
    Romero J; Berrendero F; García-Gil L; Ramos JA; Fernández-Ruiz JJ
    J Mol Neurosci; 1998 Oct; 11(2):109-19. PubMed ID: 10096037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cannabinoids on dopamine release in the corpus striatum and the nucleus accumbens in vitro.
    Szabo B; Müller T; Koch H
    J Neurochem; 1999 Sep; 73(3):1084-9. PubMed ID: 10461898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cannabinoids decrease acetylcholine release in the medial-prefrontal cortex and hippocampus, reversal by SR 141716A.
    Gessa GL; Casu MA; Carta G; Mascia MS
    Eur J Pharmacol; 1998 Aug; 355(2-3):119-24. PubMed ID: 9760025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delta 9-tetrahydrocannabinol increases prefrontal cortical catecholaminergic utilization and impairs spatial working memory in the rat: blockade of dopaminergic effects with HA966.
    Jentsch JD; Andrusiak E; Tran A; Bowers MB; Roth RH
    Neuropsychopharmacology; 1997 Jun; 16(6):426-32. PubMed ID: 9165498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression signature in brain regions exposed to long-term psychosocial stress following acute challenge with cannabinoid drugs.
    Tomas-Roig J; Havemann-Reinecke U
    Psychoneuroendocrinology; 2019 Apr; 102():1-8. PubMed ID: 30476795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hypocretin/orexin receptor-1 as a novel target to modulate cannabinoid reward.
    Flores Á; Maldonado R; Berrendero F
    Biol Psychiatry; 2014 Mar; 75(6):499-507. PubMed ID: 23896204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic mapping of the effects of WIN 55212-2 intravenous administration in the rat.
    Pontieri FE; Conti G; Zocchi A; Fieschi C; Orzi F
    Neuropsychopharmacology; 1999 Dec; 21(6):773-6. PubMed ID: 10633483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional tolerance and blockade of long-term depression at synapses in the nucleus accumbens after chronic cannabinoid exposure.
    Hoffman AF; Oz M; Caulder T; Lupica CR
    J Neurosci; 2003 Jun; 23(12):4815-20. PubMed ID: 12832502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic Exposure to WIN55,212-2 During Adolescence Alters Prefrontal Dopamine Turnover and Induces Sensorimotor Deficits in Adult Rats.
    Abboussi O; Andaloussi ZL; Chris AD; Taghzouti K
    Neurotox Res; 2020 Oct; 38(3):682-690. PubMed ID: 32757167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Juvenile cannabinoid treatment induces frontostriatal gliogenesis in Lewis rats.
    Bortolato M; Bini V; Frau R; Devoto P; Pardu A; Fan Y; Solbrig MV
    Eur Neuropsychopharmacol; 2014 Jun; 24(6):974-85. PubMed ID: 24630433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.