These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 12710231)

  • 21. The effect of ryegrass (Lolium perenne) on decrease of PAH content in long term contaminated soil.
    Rezek J; in der Wiesche C; Mackova M; Zadrazil F; Macek T
    Chemosphere; 2008 Feb; 70(9):1603-8. PubMed ID: 17888488
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Prediction of PAHs uptake by ryegrass with a partition-limited model].
    Yang ZY; Zhu LZ
    Huan Jing Ke Xue; 2006 Jun; 27(6):1212-6. PubMed ID: 16921964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plant-accelerated dissipation of phenanthrene and pyrene from water in the presence of a nonionic-surfactant.
    Gao Y; Ling W; Wong MH
    Chemosphere; 2006 Jun; 63(9):1560-7. PubMed ID: 16581106
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing plant-microbe associated bioremediation of phenanthrene and pyrene contaminated soil by SDBS-Tween 80 mixed surfactants.
    Ni H; Zhou W; Zhu L
    J Environ Sci (China); 2014 May; 26(5):1071-9. PubMed ID: 25079637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of microbial pyrene and benzo[a]pyrene mineralization in liquid medium, soil slurry, and soil.
    Derz K; Schmidt B; Schwiening S; Schuphan I
    J Environ Sci Health B; 2006; 41(5):471-84. PubMed ID: 16785161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization and enhancement of soil bioremediation by composting using the experimental design technique.
    Sayara T; Sarrà M; Sánchez A
    Biodegradation; 2010 Jun; 21(3):345-56. PubMed ID: 19882357
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of simultaneous application of plant growth regulators and bioaugmentation on improvement of phytoremediation of pyrene contaminated soils.
    Rostami S; Azhdarpoor A; Rostami M; Samaei MR
    Chemosphere; 2016 Oct; 161():219-223. PubMed ID: 27434251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil.
    Parrish ZD; Banks MK; Schwab AP
    Int J Phytoremediation; 2004; 6(2):119-37. PubMed ID: 15328979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics of biodegradation of mixtures of polycyclic aromatic hydrocarbons.
    Lotfabad SK; Gray MR
    Appl Microbiol Biotechnol; 2002 Nov; 60(3):361-6. PubMed ID: 12436320
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytoremediation potential of Brassica juncea in Cu-pyrene co-contaminated soil: comparing freshly spiked soil with aged soil.
    Chigbo C; Batty L
    J Environ Manage; 2013 Nov; 129():18-24. PubMed ID: 23792886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes.
    Lee SH; Lee WS; Lee CH; Kim JG
    J Hazard Mater; 2008 May; 153(1-2):892-8. PubMed ID: 17959304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrating biodegradation and electroosmosis for the enhanced removal of polycyclic aromatic hydrocarbons from creosote-polluted soils.
    Niqui-Arroyo JL; Ortega-Calvo JJ
    J Environ Qual; 2007; 36(5):1444-51. PubMed ID: 17766823
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phytoremediation for phenanthrene and pyrene contaminated soils.
    Gao YZ; Zhu LZ
    J Environ Sci (China); 2005; 17(1):14-8. PubMed ID: 15900750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uptake of polycyclic aromatic hydrocarbons by Trifolium pretense L. from water in the presence of a nonionic surfactant.
    Gao Y; Shen Q; Ling W; Ren L
    Chemosphere; 2008 Jun; 72(4):636-43. PubMed ID: 18387650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pyrene and benzo(a)pyrene metabolism by an Aspergillus terreus strain isolated from a polycylic aromatic hydrocarbons polluted soil.
    Capotorti G; Digianvincenzo P; Cesti P; Bernardi A; Guglielmetti G
    Biodegradation; 2004 Apr; 15(2):79-85. PubMed ID: 15068369
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production.
    Hestbjerg H; Willumsen PA; Christensen M; Andersen O; Jacobsen CS
    Environ Toxicol Chem; 2003 Apr; 22(4):692-8. PubMed ID: 12685699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of different levels of leachate on phytoremediation of pyrene-contaminated soil and simultaneous extraction of lead and cadmium.
    Salehi N; Azhdarpoor A; Shirdarreh M
    Chemosphere; 2020 May; 246():125845. PubMed ID: 31918113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study on removal of pyrene by
    Zhang X; Chen J; Liu X; Zhang Y; Zou Y; Yuan J
    Int J Phytoremediation; 2020; 22(3):313-321. PubMed ID: 31522526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil.
    Lin Q; Wang Z; Ma S; Chen Y
    Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.