These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12710669)

  • 1. Genome-wide mapping of protein-DNA interactions by chromatin immunoprecipitation and DNA microarray hybridization.
    Lieb JD
    Methods Mol Biol; 2003; 224():99-109. PubMed ID: 12710669
    [No Abstract]   [Full Text] [Related]  

  • 2. An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments.
    Liu XS; Brutlag DL; Liu JS
    Nat Biotechnol; 2002 Aug; 20(8):835-9. PubMed ID: 12101404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of chromatin immunoprecipitation assays in genome-wide location analysis of mammalian transcription factors.
    Ren B; Dynlacht BD
    Methods Enzymol; 2004; 376():304-15. PubMed ID: 14975314
    [No Abstract]   [Full Text] [Related]  

  • 4. Genome-wide mapping of protein-DNA interaction by chromatin immunoprecipitation and DNA microarray hybridization (ChIP-chip). Part A: ChIP-chip molecular methods.
    Reimer JJ; Turck F
    Methods Mol Biol; 2010; 631():139-60. PubMed ID: 20204874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the chromatin immunoprecipitation method to identify in vivo protein-DNA associations in fission yeast.
    Takahashi K; Saitoh S; Yanagida M
    Sci STKE; 2000 Oct; 2000(56):pl1. PubMed ID: 11752617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide mapping of protein-DNA interaction by chromatin immunoprecipitation and DNA microarray hybridization (ChIP-chip). Part B: ChIP-chip data analysis.
    Göbel U; Reimer J; Turck F
    Methods Mol Biol; 2010; 631():161-84. PubMed ID: 20204875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription. Of chips and ChIPs.
    Shannon MF; Rao S
    Science; 2002 Apr; 296(5568):666-9. PubMed ID: 11976432
    [No Abstract]   [Full Text] [Related]  

  • 8. A new approach to species determination for yeast strains: DNA microarray-based comparative genomic hybridization using a yeast DNA microarray with 6000 genes.
    Watanabe T; Murata Y; Oka S; Iwahashi H
    Yeast; 2004 Mar; 21(4):351-65. PubMed ID: 15042595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of p53 target database via integration of microarray and global p53 DNA-binding site analysis.
    Liu S; Mirza A; Wang L
    Methods Mol Biol; 2004; 281():33-54. PubMed ID: 15220520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomewide identification of protein binding locations using chromatin immunoprecipitation coupled with microarray.
    Cho BK; Knight EM; Palsson BØ
    Methods Mol Biol; 2008; 439():131-45. PubMed ID: 18370100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of chromatin immunoprecipitation assays in genome-wide analyses of histone modifications.
    Bernstein BE; Humphrey EL; Liu CL; Schreiber SL
    Methods Enzymol; 2004; 376():349-60. PubMed ID: 14975317
    [No Abstract]   [Full Text] [Related]  

  • 12. DamID: mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase.
    Greil F; Moorman C; van Steensel B
    Methods Enzymol; 2006; 410():342-59. PubMed ID: 16938559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of protein-DNA interactions in vivo by chromatin immunoprecipitation.
    Im H; Grass JA; Johnson KD; Boyer ME; Wu J; Bresnick EH
    Methods Mol Biol; 2004; 284():129-46. PubMed ID: 15173613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo cross-linking and immunoprecipitation for studying dynamic Protein:DNA associations in a chromatin environment.
    Kuo MH; Allis CD
    Methods; 1999 Nov; 19(3):425-33. PubMed ID: 10579938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment.
    Kim J; Bhinge AA; Morgan XC; Iyer VR
    Nat Methods; 2005 Jan; 2(1):47-53. PubMed ID: 15782160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using chromatin immunoprecipitation to map cotranscriptional mRNA processing in Saccharomyces cerevisiae.
    Keogh MC; Buratowski S
    Methods Mol Biol; 2004; 257():1-16. PubMed ID: 14769992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-DNA interaction mapping using genomic tiling path microarrays in Drosophila.
    Sun LV; Chen L; Greil F; Negre N; Li TR; Cavalli G; Zhao H; Van Steensel B; White KP
    Proc Natl Acad Sci U S A; 2003 Aug; 100(16):9428-33. PubMed ID: 12876199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome.
    Wang BD; Eyre D; Basrai M; Lichten M; Strunnikov A
    Mol Cell Biol; 2005 Aug; 25(16):7216-25. PubMed ID: 16055730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shaping time: chromatin structure and the DNA replication programme.
    Donaldson AD
    Trends Genet; 2005 Aug; 21(8):444-9. PubMed ID: 15951049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide redistribution of meiotic double-strand breaks in Saccharomyces cerevisiae.
    Robine N; Uematsu N; Amiot F; Gidrol X; Barillot E; Nicolas A; Borde V
    Mol Cell Biol; 2007 Mar; 27(5):1868-80. PubMed ID: 17189430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.