These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12710918)

  • 21. Groundwater resources in Brazil: a review of possible impacts caused by climate change.
    Hirata R; Conicelli BP
    An Acad Bras Cienc; 2012 Jun; 84(2):297-312. PubMed ID: 22634744
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The impact of poplar tree plantations for biomass production on the aquifer water budget and base flow in a Mediterranean basin.
    Folch A; Ferrer N
    Sci Total Environ; 2015 Aug; 524-525():213-24. PubMed ID: 25897729
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park.
    Muñoz-Carpena R; Ritter A; Li YC
    J Contam Hydrol; 2005 Nov; 80(1-2):49-70. PubMed ID: 16102872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production.
    Lockhart KM; King AM; Harter T
    J Contam Hydrol; 2013 Aug; 151():140-54. PubMed ID: 23800783
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Groundwater footprint methodology as policy tool for balancing water needs (agriculture & tourism) in water scarce islands - The case of Crete, Greece.
    Kourgialas NN; Karatzas GP; Dokou Z; Kokorogiannis A
    Sci Total Environ; 2018 Feb; 615():381-389. PubMed ID: 28988073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Semi-arid aquifer responses to forest restoration treatments and climate change.
    Wyatt CJ; O'Donnell FC; Springer AE
    Ground Water; 2015; 53(2):207-16. PubMed ID: 24665998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of groundwater allocation on economic welfare loss.
    Wan J; Yang YC; Lin YF
    Ground Water; 2013; 51(4):603-12. PubMed ID: 23036236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intensive groundwater use: a silent revolution that cannot be ignored.
    Llamas MR; Martínez-Santos P
    Water Sci Technol; 2005; 51(8):167-74. PubMed ID: 16007945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Virtual groundwater transfers from overexploited aquifers in the United States.
    Marston L; Konar M; Cai X; Troy TJ
    Proc Natl Acad Sci U S A; 2015 Jul; 112(28):8561-6. PubMed ID: 26124137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regional economic impacts of water management alternatives: the case of Devils Lake, North Dakota, USA.
    Leistritz FL; Leitch JA; Bangsund DA
    J Environ Manage; 2002 Dec; 66(4):465-73. PubMed ID: 12503500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Virtual water flows and trade liberalization.
    Ramirez-Vallejo J; Rogers P
    Water Sci Technol; 2004; 49(7):25-32. PubMed ID: 15195413
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coupling distributed stormwater collection and managed aquifer recharge: Field application and implications.
    Beganskas S; Fisher AT
    J Environ Manage; 2017 Sep; 200():366-379. PubMed ID: 28599220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying the effects of human pressure on groundwater quality to support water management strategies in coastal regions: a multi-tracer and statistical approach (Bou-Areg region, Morocco).
    Re V; Sacchi E; Mas-Pla J; Menció A; El Amrani N
    Sci Total Environ; 2014 Dec; 500-501():211-23. PubMed ID: 25217996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modelling of recharge and pollutant fluxes to urban groundwaters.
    Thomas A; Tellam J
    Sci Total Environ; 2006 May; 360(1-3):158-79. PubMed ID: 16325236
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Joint optimization of water allocation and water quality management in Haihe River basin.
    Martinsen G; Liu S; Mo X; Bauer-Gottwein P
    Sci Total Environ; 2019 Mar; 654():72-84. PubMed ID: 30439696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimating economic value of agricultural water under changing conditions and the effects of spatial aggregation.
    Medellín-Azuara J; Harou JJ; Howitt RE
    Sci Total Environ; 2010 Nov; 408(23):5639-48. PubMed ID: 19732940
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An assessment of Spain's Programa AGUA and its implications for sustainable water management in the province of Almería, southeast Spain.
    Downward SR; Taylor R
    J Environ Manage; 2007 Jan; 82(2):277-89. PubMed ID: 16574308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrated frameworks for assessing and managing health risks in the context of managed aquifer recharge with river water.
    Assmuth T; Simola A; Pitkänen T; Lyytimäki J; Huttula T
    Integr Environ Assess Manag; 2016 Jan; 12(1):160-73. PubMed ID: 25953621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in hydrology and salinity accompanying a century of agricultural conversion in Argentina.
    Jayawickreme DH; Santoni CS; Kim JH; Jobbágy EG; Jackson RB
    Ecol Appl; 2011 Oct; 21(7):2367-79. PubMed ID: 22073629
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling the economic impact of environmental flows for regulated rivers in New South Wales, Australia.
    Jayasuriya RT
    Water Sci Technol; 2003; 48(7):157-64. PubMed ID: 14653646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.