These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 12711236)

  • 1. Stress and strain distribution in the intact canine femur: finite element analysis.
    Shahar R; Banks-Sills L; Eliasy R
    Med Eng Phys; 2003 Jun; 25(5):387-95. PubMed ID: 12711236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain distribution within the human femur due to physiological and simplified loading: finite element analysis using the muscle standardized femur model.
    Polgár K; Gill HS; Viceconti M; Murray DW; O'Connor JJ
    Proc Inst Mech Eng H; 2003; 217(3):173-89. PubMed ID: 12807158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analysis of the femur during stance phase of gait based on musculoskeletal model simulation.
    Seo JW; Kang DW; Kim JY; Yang ST; Kim DH; Choi JS; Tack GR
    Biomed Mater Eng; 2014; 24(6):2485-93. PubMed ID: 25226949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions.
    Van Rietbergen B; Müller R; Ulrich D; Rüegsegger P; Huiskes R
    J Biomech; 1999 Apr; 32(4):443-51. PubMed ID: 10213036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of head constraint and muscle forces on the strain distribution within the intact femur.
    Simões JA; Vaz MA; Blatcher S; Taylor M
    Med Eng Phys; 2000 Sep; 22(7):453-9. PubMed ID: 11165142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of strength and strain of the proximal femur by a CT-based finite element method.
    Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K
    J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions.
    Van Rietbergen B; Müller R; Ulrich D; Rüegsegger P; Huiskes R
    J Biomech; 1999 Feb; 32(2):165-73. PubMed ID: 10052922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and numerical validation of a finite element model of the muscle standardized femur.
    Polgár K; Gill HS; Viceconti M; Murray DW; O'Connor JJ
    Proc Inst Mech Eng H; 2003; 217(3):165-72. PubMed ID: 12807157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiologically based boundary conditions in finite element modelling.
    Speirs AD; Heller MO; Duda GN; Taylor WR
    J Biomech; 2007; 40(10):2318-23. PubMed ID: 17166504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compression or tension? The stress distribution in the proximal femur.
    Rudman KE; Aspden RM; Meakin JR
    Biomed Eng Online; 2006 Feb; 5():12. PubMed ID: 16504005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of muscle activity on the forces in the femur: an in vivo study.
    Lu TW; Taylor SJ; O'Connor JJ; Walker PS
    J Biomech; 1997; 30(11-12):1101-6. PubMed ID: 9456377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of loading parameters in the canine hip in vivo.
    Page AE; Allan C; Jasty M; Harrigan TP; Bragdon CR; Harris WH
    J Biomech; 1993; 26(4-5):571-9. PubMed ID: 8478358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The femur as a musculo-skeletal construct: a free boundary condition modelling approach.
    Phillips AT
    Med Eng Phys; 2009 Jul; 31(6):673-80. PubMed ID: 19201245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetabular loading in active abduction.
    Kristan A; Mavcic B; Cimerman M; Iglis A; Tonin M; Slivnik T; Kralj-Iglic V; Daniel M
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):252-7. PubMed ID: 17601195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Integrated Musculoskeletal-Finite-Element Model to Evaluate Effects of Load Carriage on the Tibia During Walking.
    Xu C; Silder A; Zhang J; Hughes J; Unnikrishnan G; Reifman J; Rakesh V
    J Biomech Eng; 2016 Oct; 138(10):. PubMed ID: 27437640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femoral neck strain prediction during level walking using a combined musculoskeletal and finite element model approach.
    Altai Z; Montefiori E; van Veen B; A Paggiosi M; McCloskey EV; Viceconti M; Mazzà C; Li X
    PLoS One; 2021; 16(2):e0245121. PubMed ID: 33524024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femoral loading mechanics in the Virginia opossum, Didelphis virginiana: torsion and mediolateral bending in mammalian locomotion.
    Gosnell WC; Butcher MT; Maie T; Blob RW
    J Exp Biol; 2011 Oct; 214(Pt 20):3455-66. PubMed ID: 21957109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of physiological loading in total hip replacements.
    Ramos A; Fonseca F; Simões JA
    J Biomech Eng; 2006 Aug; 128(4):579-87. PubMed ID: 16813449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.