These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 12711243)

  • 1. Optimizing the biomechanical compatibility of orthopedic screws for bone fracture fixation.
    Paul JP
    Med Eng Phys; 2003 Jun; 25(5):435; author reply 435-6. PubMed ID: 12711243
    [No Abstract]   [Full Text] [Related]  

  • 2. Optimizing the biomechanical compatibility of orthopedic screws for bone fracture fixation.
    Gefen A
    Med Eng Phys; 2002 Jun; 24(5):337-47. PubMed ID: 12052361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramedullary femoral nails: one or two lag screws? A preliminary study.
    Paul JP
    Med Eng Phys; 2004 May; 26(4):359; author reply 360. PubMed ID: 15121063
    [No Abstract]   [Full Text] [Related]  

  • 4. Coronal fractures of the distal femoral condyle: a biomechanical evaluation of four internal fixation constructs.
    Hak DJ; Nguyen J; Curtiss S; Hazelwood S
    Injury; 2005 Sep; 36(9):1103-6. PubMed ID: 15982653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation research to both the external fixation surgery scheme of intertrochanteric fracture and the healing process, and its clinical application.
    Wang XK; Ye JD; Gu FS; Wang AG; Zhang CQ; Tian QQ; Li X; Dong LM
    Biomed Mater Eng; 2014; 24(1):625-32. PubMed ID: 24211947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative analysis of different treatments for distal femur fractures using the finite element method.
    Cegoñino J; García Aznar JM; Doblaré M; Palanca D; Seral B; Seral F
    Comput Methods Biomech Biomed Engin; 2004 Oct; 7(5):245-56. PubMed ID: 15621647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading.
    Cheung G; Zalzal P; Bhandari M; Spelt JK; Papini M
    Med Eng Phys; 2004 Mar; 26(2):93-108. PubMed ID: 15036177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-element modelling of femoral shaft fracture fixation techniques post total hip arthroplasty.
    Mihalko WM; Beaudoin AJ; Cardea JA; Krause WR
    J Biomech; 1992 May; 25(5):469-76. PubMed ID: 1592852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical design of less invasive stabilization system femoral plates: computational evaluation of the fracture environment.
    Reina-Romo E; Giráldez-Sánchez M; Mora-Macías J; Cano-Luis P; Domínguez J
    Proc Inst Mech Eng H; 2014 Oct; 228(10):1043-52. PubMed ID: 25332154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intramedullary femoral nails: one or two lag screws? A preliminary study.
    Wang CJ; Brown CJ; Yettram AL; Procter P
    Med Eng Phys; 2000 Nov; 22(9):613-24. PubMed ID: 11259930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical comparison of locking plate and crossing metallic and absorbable screws fixations for intra-articular calcaneal fractures.
    Ni M; Wong DW; Mei J; Niu W; Zhang M
    Sci China Life Sci; 2016 Sep; 59(9):958-64. PubMed ID: 27349998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Biomechanical studies and finite element analysis of a bone-implant interface].
    Widjaja W; Hartung C
    Biomed Tech (Berl); 2001 Dec; 46(12):351-4. PubMed ID: 11820162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periprosthetic fracture fixation of the femur following total hip arthroplasty: a review of biomechanical testing.
    Moazen M; Jones AC; Jin Z; Wilcox RK; Tsiridis E
    Clin Biomech (Bristol); 2011 Jan; 26(1):13-22. PubMed ID: 20888674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational investigations of mechanical failures of internal plate fixation.
    Chen G; Schmutz B; Wullschleger M; Pearcy MJ; Schuetz MA
    Proc Inst Mech Eng H; 2010; 224(1):119-26. PubMed ID: 20225463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new, low cost, locking plate for the long-term fixation of a critical size bone defect in the ratfemur: in vivo performance, biomechanical and finite element analysis.
    Mataliotakis GI; Tsouknidas A; Panteliou S; Vekris MD; Mitsionis GI; Agathopoulos S; Beris AE
    Biomed Mater Eng; 2015; 25(4):335-46. PubMed ID: 26407196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of calcaneus fractures in a closed manner with a distraction screw.
    Gökçe A
    Eklem Hastalik Cerrahisi; 2009; 20(1):62. PubMed ID: 19536911
    [No Abstract]   [Full Text] [Related]  

  • 17. A mechanical evaluation of two fixation methods using cancellous screws for coronal fractures of the lateral condyle of the distal femur (OTA type 33B).
    Jarit GJ; Kummer FJ; Gibber MJ; Egol KA
    J Orthop Trauma; 2006 Apr; 20(4):273-6. PubMed ID: 16721243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical design optimization of bioabsorbable fixation devices for bone fractures.
    Lovald ST; Khraishi T; Wagner J; Baack B
    J Craniofac Surg; 2009 Mar; 20(2):389-98. PubMed ID: 19242363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational simulations of stress shielding and bone resorption around existing and computer-designed orthopaedic screws.
    Gefen A
    Med Biol Eng Comput; 2002 May; 40(3):311-22. PubMed ID: 12195978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biomechanical investigation of the effects of static fixation and dynamization after interlocking femoral nailing: a finite element study.
    Shih KS; Hsu CC; Hsu TP
    J Trauma Acute Care Surg; 2012 Feb; 72(2):E46-53. PubMed ID: 22327998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.