These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 12711313)
81. Worms take the 'phyto' out of 'phytochelatins'. Vatamaniuk OK; Bucher EA; Ward JT; Rea PA Trends Biotechnol; 2002 Feb; 20(2):61-4. PubMed ID: 11814595 [TBL] [Abstract][Full Text] [Related]
82. Sub-lethal cadmium exposure increases phytochelatin concentrations in the aquatic snail Lymnaea stagnalis. Sf G; Sk D; Bennett M; Raab A; Feldmann J; Kille P; Loureiro S; Dj S; Jg B Sci Total Environ; 2016 Oct; 568():1054-1058. PubMed ID: 27358197 [TBL] [Abstract][Full Text] [Related]
83. Distinct signaling pathways respond to arsenite and reactive oxygen species in Schizosaccharomyces pombe. Rodríguez-Gabriel MA; Russell P Eukaryot Cell; 2005 Aug; 4(8):1396-402. PubMed ID: 16087744 [TBL] [Abstract][Full Text] [Related]
84. cps1+, a Schizosaccharomyces pombe gene homolog of Saccharomyces cerevisiae FKS genes whose mutation confers hypersensitivity to cyclosporin A and papulacandin B. Ishiguro J; Saitou A; Durán A; Ribas JC J Bacteriol; 1997 Dec; 179(24):7653-62. PubMed ID: 9401022 [TBL] [Abstract][Full Text] [Related]
85. The role of glutathione biosynthesis in heavy metal resistance in the fission yeast Schizosaccharomyces pombe. Coblenz A; Wolf K FEMS Microbiol Rev; 1994 Aug; 14(4):303-8. PubMed ID: 7917418 [TBL] [Abstract][Full Text] [Related]
86. Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains. Hayashi S; Kuramata M; Abe T; Takagi H; Ozawa K; Ishikawa S Plant J; 2017 Sep; 91(5):840-848. PubMed ID: 28621830 [TBL] [Abstract][Full Text] [Related]
87. Phytochelatin synthase is required for tolerating metal toxicity in a basidiomycete yeast and is a conserved factor involved in metal homeostasis in fungi. Shine AM; Shakya VP; Idnurm A Fungal Biol Biotechnol; 2015 Mar; 2():. PubMed ID: 25926993 [TBL] [Abstract][Full Text] [Related]
88. Cloning expression and analysis of phytochelatin synthase (pcs) gene from Anabaena sp. PCC 7120 offering multiple stress tolerance in Escherichia coli. Chaurasia N; Mishra Y; Rai LC Biochem Biophys Res Commun; 2008 Nov; 376(1):225-30. PubMed ID: 18775414 [TBL] [Abstract][Full Text] [Related]
89. A Cd/Fe/Zn-responsive phytochelatin synthase is constitutively present in the ancient liverwort Lunularia cruciata (L.) dumort. Degola F; De Benedictis M; Petraglia A; Massimi A; Fattorini L; Sorbo S; Basile A; Sanità di Toppi L Plant Cell Physiol; 2014 Nov; 55(11):1884-91. PubMed ID: 25189342 [TBL] [Abstract][Full Text] [Related]
90. A Sb(III)-specific efflux transporter from Ensifer adhaerens E-60. Yang R; Viswanatham T; Huang S; Li Y; Yu Y; Zhang J; Chen J; Herzberg M; Feng R; Rosen BP; Rensing C Microbiol Res; 2024 Sep; 286():127830. PubMed ID: 39004025 [TBL] [Abstract][Full Text] [Related]
91. Differential metabolism of arsenicals regulates Fps1-mediated arsenite transport. Lee J; Levin DE J Cell Biol; 2022 Feb; 221(3):. PubMed ID: 35139143 [TBL] [Abstract][Full Text] [Related]
92. The role of thiol species in the hypertolerance of Aspergillus sp. P37 to arsenic. Cánovas D; Vooijs R; Schat H; de Lorenzo V J Biol Chem; 2004 Dec; 279(49):51234-40. PubMed ID: 15364940 [TBL] [Abstract][Full Text] [Related]
93. Schizosaccharomyces pombe as a model for metal homeostasis in plant cells: the phytochelatin-dependent pathway is the main cadmium detoxification mechanism. Clemens S; Simm C New Phytol; 2003 Aug; 159(2):323-330. PubMed ID: 33873355 [TBL] [Abstract][Full Text] [Related]
94. Are cysteine, glutathione and phytochelatins responses of Myriophyllum alterniflorum to copper and arsenic stress affected by trophic conditions? Krayem M; Pinault E; Deluchat V; Labrousse P Biometals; 2022 Aug; 35(4):729-739. PubMed ID: 35639269 [TBL] [Abstract][Full Text] [Related]
95. Metalloid resistance mechanisms. Mukhopadhyay R; Li J; Bhattacharjee H; Rosen BP Adv Exp Med Biol; 1998; 456():159-81. PubMed ID: 10549368 [No Abstract] [Full Text] [Related]
96. Multilevel Regulation of Membrane Proteins in Response to Metal and Metalloid Stress: A Lesson from Yeast. Zbieralski K; Staszewski J; Konczak J; Lazarewicz N; Nowicka-Kazmierczak M; Wawrzycka D; Maciaszczyk-Dziubinska E Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674035 [TBL] [Abstract][Full Text] [Related]
97. Structural basis for the arsenite binding and translocation of Acr3 antiporter with NhaA folding pattern. Lv P; Shang Y; Zhang Y; Wang W; Liu Y; Su D; Wang W; Li C; Ma C; Yang C FASEB J; 2022 Dec; 36(12):e22659. PubMed ID: 36394534 [TBL] [Abstract][Full Text] [Related]
98. Biochemical, genomic and structural characteristics of the Acr3 pump in Castro-Severyn J; Pardo-Esté C; Araya-Durán I; Gariazzo V; Cabezas C; Valdés J; Remonsellez F; Saavedra CP Front Microbiol; 2022; 13():1047283. PubMed ID: 36406427 [TBL] [Abstract][Full Text] [Related]
99. Corrigendum to "The yeast permease Acr3p is a dual arsenite and antimonite plasma membrane transporter" [Biochim. Biophys. Acta 1798 (2010) 2170-2175]. Maciaszczyk-Dziubinska E; Wawrzycka D; Sloma E; Migocka M; Wysocki R Biochim Biophys Acta Biomembr; 2022 May; 1864(5):183856. PubMed ID: 35000760 [No Abstract] [Full Text] [Related]
100. A Critical Review of Resistance and Oxidation Mechanisms of Sb-Oxidizing Bacteria for the Bioremediation of Sb(III) Pollution. Deng R; Chen Y; Deng X; Huang Z; Zhou S; Ren B; Jin G; Hursthouse A Front Microbiol; 2021; 12():738596. PubMed ID: 34557178 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]