BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 12711363)

  • 1. Isoforms changes of tau protein during development in various species.
    Takuma H; Arawaka S; Mori H
    Brain Res Dev Brain Res; 2003 May; 142(2):121-7. PubMed ID: 12711363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental regulation of alternatively spliced isoforms of mRNA encoding MAP2 and tau in rat brain oligodendrocytes during culture maturation.
    Richter-Landsberg C; Gorath M
    J Neurosci Res; 1999 May; 56(3):259-70. PubMed ID: 10336255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation and differential expression of tau mRNA isoforms as oligodendrocytes mature in vivo: implications for myelination.
    LoPresti P
    Glia; 2002 Mar; 37(3):250-7. PubMed ID: 11857683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tau isoform regulation is region- and cell-specific in mouse brain.
    McMillan P; Korvatska E; Poorkaj P; Evstafjeva Z; Robinson L; Greenup L; Leverenz J; Schellenberg GD; D'Souza I
    J Comp Neurol; 2008 Dec; 511(6):788-803. PubMed ID: 18925637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental changes of tau protein and mRNA in cultured rat brain oligodendrocytes.
    Gorath M; Stahnke T; Mronga T; Goldbaum O; Richter-Landsberg C
    Glia; 2001 Oct; 36(1):89-101. PubMed ID: 11571787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional differences between 3-repeat and 4-repeat tau isoforms. Implications for normal tau function and the onset of neurodegenetative disease.
    Goode BL; Chau M; Denis PE; Feinstein SC
    J Biol Chem; 2000 Dec; 275(49):38182-9. PubMed ID: 10984497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmentally regulated alternative splicing of mRNAs encoding N-terminal tau variants in the rat hippocampus: structural and functional implications.
    Collet J; Fehrat L; Pollard H; Ribas de Pouplana L; Charton G; Bernard A; Moreau J; Ben-Ari Y; Khrestchatisky M
    Eur J Neurosci; 1997 Dec; 9(12):2723-33. PubMed ID: 9517477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel isoforms of tau that lack the microtubule-binding domain.
    Luo MH; Tse SW; Memmott J; Andreadis A
    J Neurochem; 2004 Jul; 90(2):340-51. PubMed ID: 15228591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning and functional characterization of chicken brain tau: isoforms with up to five tandem repeats.
    Yoshida H; Goedert M
    Biochemistry; 2002 Dec; 41(51):15203-11. PubMed ID: 12484758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient expression of fluorescent tau proteins promotes process formation in PC12 cells: contributions of the tau C-terminus to this process.
    Yu JZ; Kuret J; Rasenick MM
    J Neurosci Res; 2002 Mar; 67(5):625-33. PubMed ID: 11891775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative splicing of amino-terminal Tau mRNA in rat spinal cord during development and following axonal injury.
    Halverson RA; Chambers CB; Muma NA
    Exp Neurol; 2001 May; 169(1):105-13. PubMed ID: 11312563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The expression and distribution of tau proteins and messenger RNA in rat dorsal root ganglion neurons during development and regeneration.
    Nothias F; Boyne L; Murray M; Tessler A; Fischer I
    Neuroscience; 1995 Jun; 66(3):707-19. PubMed ID: 7644032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pattern of tau isoforms expression during development in vivo.
    Bullmann T; Holzer M; Mori H; Arendt T
    Int J Dev Neurosci; 2009 Oct; 27(6):591-7. PubMed ID: 19540327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture.
    Zempel H; Dennissen FJA; Kumar Y; Luedtke J; Biernat J; Mandelkow EM; Mandelkow E
    J Biol Chem; 2017 Jul; 292(29):12192-12207. PubMed ID: 28536263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, regional and developmental expression of rat MAP2d, a MAP2 splice variant encoding four microtubule-binding domains.
    Ferhat L; Bernard A; Ribas de Pouplana L; Ben-Ari Y; Khrestchatisky M
    Neurochem Int; 1994 Oct; 25(4):327-38. PubMed ID: 7820066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A double-labeling immunohistochemical study of tau exon 10 in Alzheimer's disease, progressive supranuclear palsy and Pick's disease.
    Ishizawa K; Ksiezak-Reding H; Davies P; Delacourte A; Tiseo P; Yen SH; Dickson DW
    Acta Neuropathol; 2000 Sep; 100(3):235-44. PubMed ID: 10965792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered microtubule-associated tau messenger RNA isoform expression in livers of griseofulvin- and 3,5-diethoxycarbonyl-1, 4-dihydrocollidine-treated mice.
    Kenner L; Zatloukal K; Stumptner C; Eferl R; Denk H
    Hepatology; 1999 Mar; 29(3):793-800. PubMed ID: 10051481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of microtubule dynamics by tau in living cells: implications for development and neurodegeneration.
    Bunker JM; Wilson L; Jordan MA; Feinstein SC
    Mol Biol Cell; 2004 Jun; 15(6):2720-8. PubMed ID: 15020716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA-132 loss is associated with tau exon 10 inclusion in progressive supranuclear palsy.
    Smith PY; Delay C; Girard J; Papon MA; Planel E; Sergeant N; Buée L; Hébert SS
    Hum Mol Genet; 2011 Oct; 20(20):4016-24. PubMed ID: 21807765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression patterns of tau mRNA isoforms correlate with susceptible lesions in progressive supranuclear palsy and corticobasal degeneration.
    Takanashi M; Mori H; Arima K; Mizuno Y; Hattori N
    Brain Res Mol Brain Res; 2002 Aug; 104(2):210-9. PubMed ID: 12225876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.