These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 12711524)
1. Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold. Lee JH; Park TG; Park HS; Lee DS; Lee YK; Yoon SC; Nam JD Biomaterials; 2003 Jul; 24(16):2773-8. PubMed ID: 12711524 [TBL] [Abstract][Full Text] [Related]
2. Preparation and properties of biodegradable poly(L-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. Yu J; Qiu Z ACS Appl Mater Interfaces; 2011 Mar; 3(3):890-7. PubMed ID: 21361280 [TBL] [Abstract][Full Text] [Related]
3. Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Lee YH; Lee JH; An IG; Kim C; Lee DS; Lee YK; Nam JD Biomaterials; 2005 Jun; 26(16):3165-72. PubMed ID: 15603811 [TBL] [Abstract][Full Text] [Related]
4. Improved mechanical properties of hydroxyapatite whisker-reinforced poly(L-lactic acid) scaffold by surface modification of hydroxyapatite. Fang Z; Feng Q Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():190-4. PubMed ID: 24411368 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Yang F; Murugan R; Ramakrishna S; Wang X; Ma YX; Wang S Biomaterials; 2004 May; 25(10):1891-900. PubMed ID: 14738853 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering. Lou T; Wang X; Song G; Gu Z; Yang Z Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519 [TBL] [Abstract][Full Text] [Related]
7. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(L-lactide) composites. Liu A; Hong Z; Zhuang X; Chen X; Cui Y; Liu Y; Jing X Acta Biomater; 2008 Jul; 4(4):1005-15. PubMed ID: 18359672 [TBL] [Abstract][Full Text] [Related]
9. Technique paper for wet-spinning poly(L-lactic acid) and poly(DL-lactide-co-glycolide) monofilament fibers. Nelson KD; Romero A; Waggoner P; Crow B; Borneman A; Smith GM Tissue Eng; 2003 Dec; 9(6):1323-30. PubMed ID: 14670119 [TBL] [Abstract][Full Text] [Related]
10. Thermally produced biodegradable scaffolds for cartilage tissue engineering. Lee SH; Kim BS; Kim SH; Kang SW; Kim YH Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of nano-fibrous poly(L-lactic acid) scaffold reinforced by surface modified chitosan micro-fiber. Lou T; Wang X; Song G Int J Biol Macromol; 2013 Oct; 61():353-8. PubMed ID: 23928011 [TBL] [Abstract][Full Text] [Related]
12. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering. Liu X; Won Y; Ma PX Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063 [TBL] [Abstract][Full Text] [Related]
13. Mechanical and thermal property characterization of poly-l-lactide (PLLA) scaffold developed using pressure-controllable green foaming technology. Sheng SJ; Hu X; Wang F; Ma QY; Gu MF Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():612-622. PubMed ID: 25686990 [TBL] [Abstract][Full Text] [Related]
14. A structural model for the flexural mechanics of nonwoven tissue engineering scaffolds. Engelmayr GC; Sacks MS J Biomech Eng; 2006 Aug; 128(4):610-22. PubMed ID: 16813453 [TBL] [Abstract][Full Text] [Related]
15. Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering. Lou T; Wang X; Song G; Gu Z; Yang Z J Mater Sci Mater Med; 2015 Jan; 26(1):5366. PubMed ID: 25578714 [TBL] [Abstract][Full Text] [Related]
16. Mechanical and biodegradable properties of porous titanium filled with poly-L-lactic acid by modified in situ polymerization technique. Nakai M; Niinomi M; Ishii D J Mech Behav Biomed Mater; 2011 Oct; 4(7):1206-18. PubMed ID: 21783129 [TBL] [Abstract][Full Text] [Related]
17. Development and cell response of a new biodegradable composite scaffold for guided bone regeneration. Navarro M; Ginebra MP; Planell JA; Zeppetelli S; Ambrosio L J Mater Sci Mater Med; 2004 Apr; 15(4):419-22. PubMed ID: 15332610 [TBL] [Abstract][Full Text] [Related]
18. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Li WJ; Cooper JA; Mauck RL; Tuan RS Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold. Wu L; Zhang H; Zhang J; Ding J Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of nano-fibrous PLLA scaffold reinforced with chitosan fibers. Wang X; Song G; Lou T; Peng W J Biomater Sci Polym Ed; 2009; 20(14):1995-2002. PubMed ID: 19874673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]