These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 12711609)
41. Amino acid sequence of a ferredoxin from thermoacidophilic archaebacterium, Sulfolobus acidocaldarius. Presence of an N6-monomethyllysine and phyletic consideration of archaebacteria. Minami Y; Wakabayashi S; Wada K; Matsubara H; Kerscher L; Oesterhelt D J Biochem; 1985 Mar; 97(3):745-53. PubMed ID: 3926756 [TBL] [Abstract][Full Text] [Related]
42. Structure-function studies of two novel UDP-GlcNAc C6 dehydratases/C4 reductases. Variation from the SYK dogma. Creuzenet C; Urbanic RV; Lam JS J Biol Chem; 2002 Jul; 277(30):26769-78. PubMed ID: 12004063 [TBL] [Abstract][Full Text] [Related]
43. Aspartic acid 405 contributes to the substrate specificity of aminopeptidase B. Fukasawa KM; Hirose J; Hata T; Ono Y Biochemistry; 2006 Sep; 45(38):11425-31. PubMed ID: 16981702 [TBL] [Abstract][Full Text] [Related]
44. Functional topology of a surface loop shielding the catalytic center in lipoprotein lipase. Faustinella F; Smith LC; Chan L Biochemistry; 1992 Aug; 31(32):7219-23. PubMed ID: 1510914 [TBL] [Abstract][Full Text] [Related]
45. Regiospecificity and catalytic triad of lysophospholipase I. Wang A; Loo R; Chen Z; Dennis EA J Biol Chem; 1997 Aug; 272(35):22030-6. PubMed ID: 9268342 [TBL] [Abstract][Full Text] [Related]
46. Serine 124 completes the Tyr, Lys and Ser triad responsible for the catalysis of human type 1 3beta-hydroxysteroid dehydrogenase. Thomas JL; Duax WL; Addlagatta A; Scaccia LA; Frizzell KA; Carloni SB J Mol Endocrinol; 2004 Aug; 33(1):253-61. PubMed ID: 15291757 [TBL] [Abstract][Full Text] [Related]
47. Structural basis of the substrate recognition of hydrazidase isolated from Microbacterium sp. strain HM58-2, which catalyzes acylhydrazide compounds as its sole carbon source. Akiyama T; Ishii M; Takuwa A; Oinuma KI; Sasaki Y; Takaya N; Yajima S Biochem Biophys Res Commun; 2017 Jan; 482(4):1007-1012. PubMed ID: 27908731 [TBL] [Abstract][Full Text] [Related]
48. Structural-based mutational analysis of D-aminoacylase from Alcaligenes faecalis DA1. Hsu CS; Lai WL; Chang WW; Liaw SH; Tsai YC Protein Sci; 2002 Nov; 11(11):2545-50. PubMed ID: 12381838 [TBL] [Abstract][Full Text] [Related]
49. Neisseria gonorrheae O-acetylpeptidoglycan esterase, a serine esterase with a Ser-His-Asp catalytic triad. Weadge JT; Clarke AJ Biochemistry; 2007 Apr; 46(16):4932-41. PubMed ID: 17388571 [TBL] [Abstract][Full Text] [Related]
51. Mutational evidence of transition state stabilization by serine 88 in Escherichia coli type I signal peptidase. Carlos JL; Klenotic PA; Paetzel M; Strynadka NC; Dalbey RE Biochemistry; 2000 Jun; 39(24):7276-83. PubMed ID: 10852727 [TBL] [Abstract][Full Text] [Related]
52. Functional interactions between putative intramembrane charged residues in the lactose permease of Escherichia coli. Sahin-Tóth M; Dunten RL; Gonzalez A; Kaback HR Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10547-51. PubMed ID: 1438245 [TBL] [Abstract][Full Text] [Related]
53. Ribonucleotide reductase R2 protein is phosphorylated at serine-20 by P34cdc2 kinase. Chan AK; Persad S; Litchfield DW; Wright JA Biochim Biophys Acta; 1999 Jan; 1448(3):363-71. PubMed ID: 9990288 [TBL] [Abstract][Full Text] [Related]
54. Knowledge-based modeling of the serine protease triad into non-proteases. Iengar P; Ramakrishnan C Protein Eng; 1999 Aug; 12(8):649-56. PubMed ID: 10469825 [TBL] [Abstract][Full Text] [Related]
55. Identification of the catalytic triad of the lipase/acyltransferase from Aeromonas hydrophila. Brumlik MJ; Buckley JT J Bacteriol; 1996 Apr; 178(7):2060-4. PubMed ID: 8606184 [TBL] [Abstract][Full Text] [Related]
56. Primary structure of murine major histocompatibility complex alloantigens: amino acid sequence of the amino-terminal one hundred and seventy-three residues of the H-2Kb glycoprotein. Uehara H; Ewenstein BM; Martinko JM; Nathenson SG; Coligan JE; Kindt TJ Biochemistry; 1980 Jan; 19(2):306-15. PubMed ID: 6986168 [TBL] [Abstract][Full Text] [Related]
58. Structural relationship between lipases and peptidases of the prolyl oligopeptidase family. Polgár L FEBS Lett; 1992 Oct; 311(3):281-4. PubMed ID: 1397329 [TBL] [Abstract][Full Text] [Related]
59. Mutagenic definition of a papain-like catalytic triad, sufficiency of the N-terminal domain for single-site core catalytic enzyme acylation, and C-terminal domain for augmentative metal activation of a eukaryotic phytochelatin synthase. Romanyuk ND; Rigden DJ; Vatamaniuk OK; Lang A; Cahoon RE; Jez JM; Rea PA Plant Physiol; 2006 Jul; 141(3):858-69. PubMed ID: 16714405 [TBL] [Abstract][Full Text] [Related]
60. Involvement of the Arg-Asp-His catalytic triad in enzymatic cleavage of the phosphodiester bond. Kubiak RJ; Yue X; Hondal RJ; Mihai C; Tsai MD; Bruzik KS Biochemistry; 2001 May; 40(18):5422-32. PubMed ID: 11331006 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]