These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 12712310)
1. Evaluation of the redox properties and anti/pro-oxidant effects of selected flavonoids by means of a DNA-based electrochemical biosensor. Labuda J; Bucková M; Heilerová L; Silhár S; Stepánek I Anal Bioanal Chem; 2003 May; 376(2):168-73. PubMed ID: 12712310 [TBL] [Abstract][Full Text] [Related]
2. Antioxidant properties of complexes of flavonoids with metal ions. de Souza RF; De Giovani WF Redox Rep; 2004; 9(2):97-104. PubMed ID: 15231064 [TBL] [Abstract][Full Text] [Related]
3. Versatile redox chemistry complicates antioxidant capacity assessment: flavonoids as milieu-dependent anti- and pro-oxidants. Chobot V; Kubicova L; Bachmann G; Hadacek F Int J Mol Sci; 2013 Jun; 14(6):11830-41. PubMed ID: 23736691 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of molecular properties and reactions with oxidants for quercetin, catechin, and naringenin. Veiko AG; Lapshina EA; Zavodnik IB Mol Cell Biochem; 2021 Dec; 476(12):4287-4299. PubMed ID: 34406575 [TBL] [Abstract][Full Text] [Related]
5. Cupric ion reducing antioxidant capacity assay for food antioxidants: vitamins, polyphenolics, and flavonoids in food extracts. Apak R; Güçlü K; Ozyürek M; Bektas Oğlu B; Bener M Methods Mol Biol; 2008; 477():163-93. PubMed ID: 19082947 [TBL] [Abstract][Full Text] [Related]
6. Protection of ascorbic acid from copper(II)-catalyzed oxidative degradation in the presence of flavonoids: quercetin, catechin and morin. Beker BY; Sönmezoğlu I; Imer F; Apak R Int J Food Sci Nutr; 2011 Aug; 62(5):504-12. PubMed ID: 21391791 [TBL] [Abstract][Full Text] [Related]
7. Structure-Activity Relationships Analysis of Monomeric and Polymeric Polyphenols (Quercetin, Rutin and Catechin) Obtained by Various Polymerization Methods. Latos-Brozio M; Masek A Chem Biodivers; 2019 Dec; 16(12):e1900426. PubMed ID: 31657102 [TBL] [Abstract][Full Text] [Related]
8. Regeneration of phenolic antioxidants from phenoxyl radicals: an ESR and electrochemical study of antioxidant hierarchy. Jørgensen LV; Madsen HL; Thomsen MK; Dragsted LO; Skibsted LH Free Radic Res; 1999 Mar; 30(3):207-20. PubMed ID: 10711791 [TBL] [Abstract][Full Text] [Related]
9. Novel Protein-Based Solid-Biosensor for Determining Pro-oxidant Activity of Phenolic Compounds. Akyüz E; Başkan KS; Tütem E; Apak R J Agric Food Chem; 2017 Jul; 65(28):5821-5830. PubMed ID: 28635261 [TBL] [Abstract][Full Text] [Related]
10. Metal binding of flavonoids and their distinct inhibition mechanisms toward the oxidation activity of Cu2+-β-amyloid: not just serving as suicide antioxidants! Tay WM; da Silva GF; Ming LJ Inorg Chem; 2013 Jan; 52(2):679-90. PubMed ID: 23301941 [TBL] [Abstract][Full Text] [Related]
11. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Apak R; Güçlü K; Ozyürek M; Karademir SE J Agric Food Chem; 2004 Dec; 52(26):7970-81. PubMed ID: 15612784 [TBL] [Abstract][Full Text] [Related]
12. Antigenotoxic effects of (-)-epigallocatechin-3-gallate (EGCG), quercetin, and rutin on chromium trioxide-induced micronuclei in the polychromatic erythrocytes of mouse peripheral blood. García-Rodríguez Mdel C; Nicolás-Méndez T; Montaño-Rodríguez AR; Altamirano-Lozano MA J Toxicol Environ Health A; 2014; 77(6):324-36. PubMed ID: 24593145 [TBL] [Abstract][Full Text] [Related]
13. Investigations of the antioxidant properties of plant extracts using a DNA-electrochemical biosensor. Mello LD; Hernandez S; Marrazza G; Mascini M; Kubota LT Biosens Bioelectron; 2006 Jan; 21(7):1374-82. PubMed ID: 16002275 [TBL] [Abstract][Full Text] [Related]
14. An assay for pro-oxidant reactivity based on phenoxyl radicals generated by laccase. Moţ AC; Coman C; Miron C; Damian G; Sarbu C; Silaghi-Dumitrescu R Food Chem; 2014 Jan; 143():214-22. PubMed ID: 24054233 [TBL] [Abstract][Full Text] [Related]
15. Antioxidant and pro-oxidant activity of (-)-epigallocatechin-3-gallate in food emulsions: Influence of pH and phenolic concentration. Zhou L; Elias RJ Food Chem; 2013 Jun; 138(2-3):1503-9. PubMed ID: 23411273 [TBL] [Abstract][Full Text] [Related]
16. Kinetic evaluation of the reactivity of flavonoids as radical scavengers. Fujisaw S; Ishihara M; Kadoma Y SAR QSAR Environ Res; 2002 Oct; 13(6):617-27. PubMed ID: 12479376 [TBL] [Abstract][Full Text] [Related]
17. Effect of flavonoids on 2'-deoxyguanosine and DNA oxidation caused by singlet molecular oxygen. Carneiro CD; Amorim JC; Cadena SM; Noleto GR; Di Mascio P; Rocha ME; Martinez GR Food Chem Toxicol; 2010; 48(8-9):2380-7. PubMed ID: 20561949 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical study of quercetin-DNA interactions: part II. In situ sensing with DNA biosensors. Oliveira-Brett AM; Diculescu VC Bioelectrochemistry; 2004 Sep; 64(2):143-50. PubMed ID: 15296787 [TBL] [Abstract][Full Text] [Related]
19. Synthesis, spectral and electrochemical properties of Al(III) and Zn(II) complexes with flavonoids. de Souza RF; De Giovani WF Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jul; 61(9):1985-90. PubMed ID: 15911381 [TBL] [Abstract][Full Text] [Related]
20. Determination of rutin, catechin, epicatechin, and epicatechin gallate in buckwheat Fagopyrum esculentum Moench by micro-high-performance liquid chromatography with electrochemical detection. Danila AM; Kotani A; Hakamata H; Kusu F J Agric Food Chem; 2007 Feb; 55(4):1139-43. PubMed ID: 17253718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]