These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 12712364)

  • 1. New approaches to augment fungal biotransformation.
    Shanmugam B; Luckman S; Summers M; Bernan V; Greenstein M
    J Ind Microbiol Biotechnol; 2003 May; 30(5):308-14. PubMed ID: 12712364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of amoxapine by Cunninghamella elegans.
    Moody JD; Zhang D; Heinze TM; Cerniglia CE
    Appl Environ Microbiol; 2000 Aug; 66(8):3646-9. PubMed ID: 10919836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of metabolites in a bioequivalence study II: amoxapine, 7-hydroxyamoxapine, and 8-hydroxyamoxapine.
    Midha KK; Hubbard JW; McKay G; Rawson MJ; Hsia D
    Int J Clin Pharmacol Ther; 1999 Sep; 37(9):428-38. PubMed ID: 10507241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new and fast DLLME-CE method for the enantioselective analysis of zopiclone and its active metabolite after fungal biotransformation.
    de Albuquerque NC; de Gaitani CM; de Oliveira AR
    J Pharm Biomed Anal; 2015 May; 109():192-201. PubMed ID: 25778930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation of doxepin by Cunninghamella elegans.
    Moody JD; Freeman JP; Cerniglia CE
    Drug Metab Dispos; 1999 Oct; 27(10):1157-64. PubMed ID: 10497142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotransformation of metoprolol by the fungus Cunninghamella blakesleeana.
    Ma B; Huang HH; Chen XY; Sun YM; Lin LH; Zhong DF
    Acta Pharmacol Sin; 2007 Jul; 28(7):1067-74. PubMed ID: 17588344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of amoxapine, 8-hydroxyamoxapine, and maprotiline by high-pressure liquid chromatography.
    Ketchum C; Robinson CA; Scott JW
    Ther Drug Monit; 1983; 5(3):309-12. PubMed ID: 6636258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial transformation of ambrisentan to its glycosides by Cunninghamella elegans.
    Sponchiado R; Sorrentino JM; Olegário N; Oliveira SS; Cordenonsi LM; Silveira GP; Fuentefria AM; Mendez ASL; Steppe M; Garcia CV
    Biomed Chromatogr; 2019 Jun; 33(6):e4496. PubMed ID: 30663135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformation of bromhexine by Cunninghamella elegans, C. echinulata and C. blakesleeana.
    Dube AK; Kumar MS
    Braz J Microbiol; 2017; 48(2):259-267. PubMed ID: 27988088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial models of mammalian metabolism: microbial transformation of naproxen.
    el Sayed KA
    Pharmazie; 2000 Dec; 55(12):934-6. PubMed ID: 11189871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid-chromatographic determination of amoxapine and 8-hydroxyamoxapine in human serum.
    Tasset JJ; Hassan FM
    Clin Chem; 1982 Oct; 28(10):2154-7. PubMed ID: 7127747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotransformation of flurbiprofen by Cunninghamella species.
    Amadio J; Gordon K; Murphy CD
    Appl Environ Microbiol; 2010 Sep; 76(18):6299-303. PubMed ID: 20656862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of the corticosteroid hormone cortexolone on the metabolites produced during phenanthrene biotransformation in Cunninghamella elegans.
    Lisowska K; Długoński J; Freeman JP; Cerniglia CE
    Chemosphere; 2006 Aug; 64(9):1499-506. PubMed ID: 16504243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening and evaluation of fungal resources for loratadine metabolites.
    Keerthana M; Vidyavathi M
    J Biosci; 2018 Dec; 43(5):823-833. PubMed ID: 30541944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransformation of mirtazapine by Cunninghamella elegans.
    Moody JD; Freeman JP; Fu PP; Cerniglia CE
    Drug Metab Dispos; 2002 Nov; 30(11):1274-9. PubMed ID: 12386135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The formation of 1-hydroxymethylnaphthalene and 6-hydroxymethylquinoline by both oxidative and reductive routes in Cunninghamella elegans.
    Mountfield RJ; Hopper DJ
    Appl Microbiol Biotechnol; 1998 Sep; 50(3):379-83. PubMed ID: 9802224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotransformation of bavachinin by three fungal cell cultures.
    Luo J; Liang Q; Shen Y; Chen X; Yin Z; Wang M
    J Biosci Bioeng; 2014 Feb; 117(2):191-196. PubMed ID: 24012108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of amoxapine and its metabolites in human serum by high-performance liquid chromatography.
    Kobayashi A; Sugita S; Nakazawa K
    Neuropharmacology; 1985 Dec; 24(12):1253-6. PubMed ID: 4094661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid oxidation of ring methyl groups is the primary mechanism of biotransformation of gemfibrozil by the fungus Cunninghamella elegans.
    Kang SI; Kang SY; Kanaly RA; Lee E; Lim Y; Hur HG
    Arch Microbiol; 2009 Jun; 191(6):509-17. PubMed ID: 19404612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformation of fluorophenyl pyridine carboxylic acids by the model fungus Cunninghamella elegans.
    Palmer-Brown W; Dunne B; Ortin Y; Fox MA; Sandford G; Murphy CD
    Xenobiotica; 2017 Sep; 47(9):763-770. PubMed ID: 27541932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.