These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1038 related articles for article (PubMed ID: 12712404)
1. Suppression of LNCaP prostate cancer xenograft tumors by a prostate-specific protein tyrosine phosphatase, prostatic acid phosphatase. Igawa T; Lin FF; Rao P; Lin MF Prostate; 2003 Jun; 55(4):247-58. PubMed ID: 12712404 [TBL] [Abstract][Full Text] [Related]
2. Decreased expression of cellular prostatic acid phosphatase increases tumorigenicity of human prostate cancer cells. Lin MF; Lee MS; Zhou XW; Andressen JC; Meng TC; Johansson SL; West WW; Taylor RJ; Anderson JR; Lin FF J Urol; 2001 Nov; 166(5):1943-50. PubMed ID: 11586265 [TBL] [Abstract][Full Text] [Related]
3. Expression of human prostatic acid phosphatase activity and the growth of prostate carcinoma cells. Lin MF; DaVolio J; Garcia-Arenas R Cancer Res; 1992 Sep; 52(17):4600-7. PubMed ID: 1380886 [TBL] [Abstract][Full Text] [Related]
4. ErbB-2 signaling is involved in regulating PSA secretion in androgen-independent human prostate cancer LNCaP C-81 cells. Lee MS; Igawa T; Yuan TC; Zhang XQ; Lin FF; Lin MF Oncogene; 2003 Feb; 22(5):781-96. PubMed ID: 12569372 [TBL] [Abstract][Full Text] [Related]
5. Cellular prostatic acid phosphatase: a protein tyrosine phosphatase involved in androgen-independent proliferation of prostate cancer. Veeramani S; Yuan TC; Chen SJ; Lin FF; Petersen JE; Shaheduzzaman S; Srivastava S; MacDonald RG; Lin MF Endocr Relat Cancer; 2005 Dec; 12(4):805-22. PubMed ID: 16322323 [TBL] [Abstract][Full Text] [Related]
6. NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice. Jin RJ; Wang Y; Masumori N; Ishii K; Tsukamoto T; Shappell SB; Hayward SW; Kasper S; Matusik RJ Cancer Res; 2004 Aug; 64(15):5489-95. PubMed ID: 15289359 [TBL] [Abstract][Full Text] [Related]
7. Regulation of the expression of prostatic acid phosphatase in LNCaP human prostate carcinoma cells. Lin MF; Garcia-Arenas R; Kawachi M; Lin FF Cell Mol Biol Res; 1993; 39(8):739-50. PubMed ID: 7951413 [TBL] [Abstract][Full Text] [Related]
9. Interaction between protein tyrosine phosphatase and protein tyrosine kinase is involved in androgen-promoted growth of human prostate cancer cells. Meng TC; Lee MS; Lin MF Oncogene; 2000 May; 19(22):2664-77. PubMed ID: 10851066 [TBL] [Abstract][Full Text] [Related]
10. A conditional replication-competent adenoviral vector, Ad-OC-E1a, to cotarget prostate cancer and bone stroma in an experimental model of androgen-independent prostate cancer bone metastasis. Matsubara S; Wada Y; Gardner TA; Egawa M; Park MS; Hsieh CL; Zhau HE; Kao C; Kamidono S; Gillenwater JY; Chung LW Cancer Res; 2001 Aug; 61(16):6012-9. PubMed ID: 11507044 [TBL] [Abstract][Full Text] [Related]
12. Monomethylated selenium inhibits growth of LNCaP human prostate cancer xenograft accompanied by a decrease in the expression of androgen receptor and prostate-specific antigen (PSA). Lee SO; Yeon Chun J; Nadiminty N; Trump DL; Ip C; Dong Y; Gao AC Prostate; 2006 Jul; 66(10):1070-5. PubMed ID: 16637076 [TBL] [Abstract][Full Text] [Related]
13. Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter. Spitzweg C; O'Connor MK; Bergert ER; Tindall DJ; Young CY; Morris JC Cancer Res; 2000 Nov; 60(22):6526-30. PubMed ID: 11103823 [TBL] [Abstract][Full Text] [Related]
14. Blockade of transforming growth factor-beta signaling suppresses progression of androgen-independent human prostate cancer in nude mice. Zhang F; Lee J; Lu S; Pettaway CA; Dong Z Clin Cancer Res; 2005 Jun; 11(12):4512-20. PubMed ID: 15958637 [TBL] [Abstract][Full Text] [Related]
15. Androgen deprivation induces selective outgrowth of aggressive hormone-refractory prostate cancer clones expressing distinct cellular and molecular properties not present in parental androgen-dependent cancer cells. Tso CL; McBride WH; Sun J; Patel B; Tsui KH; Paik SH; Gitlitz B; Caliliw R; van Ophoven A; Wu L; deKernion J; Belldegrun A Cancer J; 2000; 6(4):220-33. PubMed ID: 11038142 [TBL] [Abstract][Full Text] [Related]
16. Id-1 expression induces androgen-independent prostate cancer cell growth through activation of epidermal growth factor receptor (EGF-R). Ling MT; Wang X; Lee DT; Tam PC; Tsao SW; Wong YC Carcinogenesis; 2004 Apr; 25(4):517-25. PubMed ID: 14688027 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of human prostate cancer xenograft growth by 125I labeled triple-helix forming oligonucleotide directed against androgen receptor. Zhang Y; Ma Y; Lu HP; Gao JH; Liang CS; Liu CZ; Zou JT; Wang HQ Chin Med J (Engl); 2008 Nov; 121(22):2284-9. PubMed ID: 19080333 [TBL] [Abstract][Full Text] [Related]
18. Tyrosine phosphorylation of a 185 kDa phosphoprotein (pp185) inversely correlates with the cellular activity of human prostatic acid phosphatase. Lin MF; Meng TC Biochem Biophys Res Commun; 1996 Sep; 226(1):206-13. PubMed ID: 8806615 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Raffo AJ; Perlman H; Chen MW; Day ML; Streitman JS; Buttyan R Cancer Res; 1995 Oct; 55(19):4438-45. PubMed ID: 7671257 [TBL] [Abstract][Full Text] [Related]
20. Suppression of prostate tumor cell growth in vivo by WT1, the Wilms' tumor suppressor gene. Fraizer G; Leahy R; Priyadarshini S; Graham K; Delacerda J; Diaz M Int J Oncol; 2004 Mar; 24(3):461-71. PubMed ID: 14767530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]