BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 12713044)

  • 1. Gateable nanofluidic interconnects for multilayered microfluidic separation systems.
    Kuo TC; Cannon DM; Chen Y; Tulock JJ; Shannon MA; Sweedler JV; Bohn PW
    Anal Chem; 2003 Apr; 75(8):1861-7. PubMed ID: 12713044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional integrated microfluidic architectures enabled through electrically switchable nanocapillary array membranes.
    Gatimu EN; King TL; Sweedler JV; Bohn PW
    Biomicrofluidics; 2007 May; 1(2):21502. PubMed ID: 19693375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocapillary array interconnects for gated analyte injections and electrophoretic separations in multilayer microfluidic architectures.
    Cannon DM; Kuo TC; Bohn PW; Sweedler JV
    Anal Chem; 2003 May; 75(10):2224-30. PubMed ID: 12918959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluidic communication between multiple vertically segregated microfluidic channels connected by nanocapillary array membranes.
    Gong M; Flachsbart BR; Shannon MA; Bohn PW; Sweedler JV
    Electrophoresis; 2008 Mar; 29(6):1237-44. PubMed ID: 18288777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profiling pH gradients across nanocapillary array membranes connecting microfluidic channels.
    Fa K; Tulock JJ; Sweedler JV; Bohn PW
    J Am Chem Soc; 2005 Oct; 127(40):13928-33. PubMed ID: 16201814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multidimensional separation of chiral amino acid mixtures in a multilayered three-dimensional hybrid microfluidic/nanofluidic device.
    Kim BY; Yang J; Gong M; Flachsbart BR; Shannon MA; Bohn PW; Sweedler JV
    Anal Chem; 2009 Apr; 81(7):2715-22. PubMed ID: 19271741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic separation and gateable fraction collection for mass-limited samples.
    Tulock JJ; Shannon MA; Bohn PW; Sweedler JV
    Anal Chem; 2004 Nov; 76(21):6419-25. PubMed ID: 15516136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing.
    Flachsbart BR; Wong K; Iannacone JM; Abante EN; Vlach RL; Rauchfuss PA; Bohn PW; Sweedler JV; Shannon MA
    Lab Chip; 2006 May; 6(5):667-74. PubMed ID: 16652183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of nanocapillary arrays into microfluidic devices for use as analyte concentrators.
    Zhang Y; Timperman AT
    Analyst; 2003 Jun; 128(6):537-42. PubMed ID: 12866863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New approaches for fabrication of microfluidic capillary electrophoresis devices with on-chip conductivity detection.
    Guijt RM; Baltussen E; van der Steen G; Schasfoort RB; Schlautmann S; Billiet HA; Frank J; van Dedem GW; van den Berg A
    Electrophoresis; 2001 Jan; 22(2):235-41. PubMed ID: 11288890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices.
    Wabuyele MB; Ford SM; Stryjewski W; Barrow J; Soper SA
    Electrophoresis; 2001 Oct; 22(18):3939-48. PubMed ID: 11700724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocapillary arrays effect mixing and reaction in multilayer fluidic structures.
    Kuo TC; Kim HK; Cannon DM; Shannon MA; Sweedler JV; Bohn PW
    Angew Chem Int Ed Engl; 2004 Mar; 43(14):1862-5. PubMed ID: 15054797
    [No Abstract]   [Full Text] [Related]  

  • 13. A disposable poly(methylmethacrylate)-based microfluidic module for protein identification by nanoelectrospray ionization-tandem mass spectrometry.
    Chen SH; Sung WC; Lee GB; Lin ZY; Chen PW; Liao PC
    Electrophoresis; 2001 Oct; 22(18):3972-7. PubMed ID: 11700728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sample purification on a microfluidic device.
    Footz T; Wunsam S; Kulak S; Crabtree HJ; Glerum DM; Backhouse CJ
    Electrophoresis; 2001 Oct; 22(18):3868-75. PubMed ID: 11700715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sample preconcentration by field amplification stacking for microchip-based capillary electrophoresis.
    Lichtenberg J; Verpoorte E; de Rooij NF
    Electrophoresis; 2001 Jan; 22(2):258-71. PubMed ID: 11288893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centrifugal sedimentation for selectively packing channels with silica microbeads in three-dimensional micro/nanofluidic devices.
    Gong M; Bohn PW; Sweedler JV
    Anal Chem; 2009 Mar; 81(5):2022-6. PubMed ID: 19182940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated fluidic systems on a nanometer scale and the study on behavior of liquids in small confinement.
    Hibara A; Tsukahara T; Kitamori T
    J Chromatogr A; 2009 Jan; 1216(4):673-83. PubMed ID: 19121833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field-effect flow control in a polydimethylsiloxane-based microfluidic system.
    Buch JS; Wang PC; DeVoe DL; Lee CS
    Electrophoresis; 2001 Oct; 22(18):3902-7. PubMed ID: 11700719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification.
    Lin CH; Lee GB; Fu LM; Chen SH
    Biosens Bioelectron; 2004 Jul; 20(1):83-90. PubMed ID: 15142580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.