These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 12713044)

  • 1. Gateable nanofluidic interconnects for multilayered microfluidic separation systems.
    Kuo TC; Cannon DM; Chen Y; Tulock JJ; Shannon MA; Sweedler JV; Bohn PW
    Anal Chem; 2003 Apr; 75(8):1861-7. PubMed ID: 12713044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional integrated microfluidic architectures enabled through electrically switchable nanocapillary array membranes.
    Gatimu EN; King TL; Sweedler JV; Bohn PW
    Biomicrofluidics; 2007 May; 1(2):21502. PubMed ID: 19693375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocapillary array interconnects for gated analyte injections and electrophoretic separations in multilayer microfluidic architectures.
    Cannon DM; Kuo TC; Bohn PW; Sweedler JV
    Anal Chem; 2003 May; 75(10):2224-30. PubMed ID: 12918959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluidic communication between multiple vertically segregated microfluidic channels connected by nanocapillary array membranes.
    Gong M; Flachsbart BR; Shannon MA; Bohn PW; Sweedler JV
    Electrophoresis; 2008 Mar; 29(6):1237-44. PubMed ID: 18288777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profiling pH gradients across nanocapillary array membranes connecting microfluidic channels.
    Fa K; Tulock JJ; Sweedler JV; Bohn PW
    J Am Chem Soc; 2005 Oct; 127(40):13928-33. PubMed ID: 16201814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multidimensional separation of chiral amino acid mixtures in a multilayered three-dimensional hybrid microfluidic/nanofluidic device.
    Kim BY; Yang J; Gong M; Flachsbart BR; Shannon MA; Bohn PW; Sweedler JV
    Anal Chem; 2009 Apr; 81(7):2715-22. PubMed ID: 19271741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic separation and gateable fraction collection for mass-limited samples.
    Tulock JJ; Shannon MA; Bohn PW; Sweedler JV
    Anal Chem; 2004 Nov; 76(21):6419-25. PubMed ID: 15516136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing.
    Flachsbart BR; Wong K; Iannacone JM; Abante EN; Vlach RL; Rauchfuss PA; Bohn PW; Sweedler JV; Shannon MA
    Lab Chip; 2006 May; 6(5):667-74. PubMed ID: 16652183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of nanocapillary arrays into microfluidic devices for use as analyte concentrators.
    Zhang Y; Timperman AT
    Analyst; 2003 Jun; 128(6):537-42. PubMed ID: 12866863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New approaches for fabrication of microfluidic capillary electrophoresis devices with on-chip conductivity detection.
    Guijt RM; Baltussen E; van der Steen G; Schasfoort RB; Schlautmann S; Billiet HA; Frank J; van Dedem GW; van den Berg A
    Electrophoresis; 2001 Jan; 22(2):235-41. PubMed ID: 11288890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices.
    Wabuyele MB; Ford SM; Stryjewski W; Barrow J; Soper SA
    Electrophoresis; 2001 Oct; 22(18):3939-48. PubMed ID: 11700724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocapillary arrays effect mixing and reaction in multilayer fluidic structures.
    Kuo TC; Kim HK; Cannon DM; Shannon MA; Sweedler JV; Bohn PW
    Angew Chem Int Ed Engl; 2004 Mar; 43(14):1862-5. PubMed ID: 15054797
    [No Abstract]   [Full Text] [Related]  

  • 13. A disposable poly(methylmethacrylate)-based microfluidic module for protein identification by nanoelectrospray ionization-tandem mass spectrometry.
    Chen SH; Sung WC; Lee GB; Lin ZY; Chen PW; Liao PC
    Electrophoresis; 2001 Oct; 22(18):3972-7. PubMed ID: 11700728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sample purification on a microfluidic device.
    Footz T; Wunsam S; Kulak S; Crabtree HJ; Glerum DM; Backhouse CJ
    Electrophoresis; 2001 Oct; 22(18):3868-75. PubMed ID: 11700715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sample preconcentration by field amplification stacking for microchip-based capillary electrophoresis.
    Lichtenberg J; Verpoorte E; de Rooij NF
    Electrophoresis; 2001 Jan; 22(2):258-71. PubMed ID: 11288893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centrifugal sedimentation for selectively packing channels with silica microbeads in three-dimensional micro/nanofluidic devices.
    Gong M; Bohn PW; Sweedler JV
    Anal Chem; 2009 Mar; 81(5):2022-6. PubMed ID: 19182940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directly Accessible and Transferrable Nanofluidic Systems for Biomolecule Manipulation.
    Kim YS; Dincau BM; Kwon YT; Kim JH; Yeo WH
    ACS Sens; 2019 May; 4(5):1417-1423. PubMed ID: 31062586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated fluidic systems on a nanometer scale and the study on behavior of liquids in small confinement.
    Hibara A; Tsukahara T; Kitamori T
    J Chromatogr A; 2009 Jan; 1216(4):673-83. PubMed ID: 19121833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field-effect flow control in a polydimethylsiloxane-based microfluidic system.
    Buch JS; Wang PC; DeVoe DL; Lee CS
    Electrophoresis; 2001 Oct; 22(18):3902-7. PubMed ID: 11700719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.