BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12713096)

  • 1. Crosslinkable PEO-PPO-PEO-based reverse thermo-responsive gels as potentially injectable materials.
    Sosnik A; Cohn D; San Román J; Abraham GA
    J Biomater Sci Polym Ed; 2003; 14(3):227-39. PubMed ID: 12713096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethoxysilane-capped PEO-PPO-PEO triblocks: a new family of reverse thermo-responsive polymers.
    Sosnik A; Cohn D
    Biomaterials; 2004 Jun; 25(14):2851-8. PubMed ID: 14962563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PEO-PPO-PEO-based poly(ether ester urethane)s as degradable reverse thermo-responsive multiblock copolymers.
    Cohn D; Lando G; Sosnik A; Garty S; Levi A
    Biomaterials; 2006 Mar; 27(9):1718-27. PubMed ID: 16310849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse thermo-responsive poly(ethylene oxide) and poly(propylene oxide) multiblock copolymers.
    Sosnik A; Cohn D
    Biomaterials; 2005 Feb; 26(4):349-57. PubMed ID: 15275809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular hydrogels based on self-assembly between PEO-PPO-PEO triblock copolymers and alpha-cyclodextrin.
    Ni X; Cheng A; Li J
    J Biomed Mater Res A; 2009 Mar; 88(4):1031-6. PubMed ID: 18404710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1H NMR spectroscopic investigations on the micellization and gelation of PEO-PPO-PEO block copolymers in aqueous solutions.
    Ma JH; Guo C; Tang YL; Liu HZ
    Langmuir; 2007 Sep; 23(19):9596-605. PubMed ID: 17655339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dually responsive injectable hydrogel prepared by in situ cross-linking of glycol chitosan and benzaldehyde-capped PEO-PPO-PEO.
    Ding C; Zhao L; Liu F; Cheng J; Gu J; Dan S; Liu C; Qu X; Yang Z
    Biomacromolecules; 2010 Apr; 11(4):1043-51. PubMed ID: 20337439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injectable and mechanically robust 4-arm PPO-PEO/graphene oxide composite hydrogels for biomedical applications.
    Lee Y; Bae JW; Hoang Thi TT; Park KM; Park KD
    Chem Commun (Camb); 2015 May; 51(42):8876-9. PubMed ID: 25925723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on a novel multi-sensitive hydrogel: influence of the biomimetic phosphorylcholine end-groups on the PEO-PPO-PEO tri-block co-polymers.
    Meng S; Guo Z; Wang Q; Liu Z; Wang Q; Zhong W; Du Q
    J Biomater Sci Polym Ed; 2011; 22(4-6):651-64. PubMed ID: 20573315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved reverse thermo-responsive polymeric systems.
    Cohn D; Sosnik A; Levy A
    Biomaterials; 2003 Sep; 24(21):3707-14. PubMed ID: 12818542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo release of albumin using a biodegradable MPEG-PCL diblock copolymer as an in situ gel-forming carrier.
    Hyun H; Kim YH; Song IB; Lee JW; Kim MS; Khang G; Park K; Lee HB
    Biomacromolecules; 2007 Apr; 8(4):1093-100. PubMed ID: 17326678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) gels as a release vehicle for percutaneous fentanyl.
    Liaw J; Lin Y
    J Control Release; 2000 Aug; 68(2):273-82. PubMed ID: 10925135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular gels of poly-α-cyclodextrin and PEO-based copolymers for controlled drug release.
    Simões SM; Veiga F; Ribeiro AC; Figueiras AR; Taboada P; Concheiro A; Alvarez-Lorenzo C
    Eur J Pharm Biopharm; 2014 Aug; 87(3):579-88. PubMed ID: 24769064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel synthetic dermal fillers based on sodium carboxymethylcellulose: comparison with crosslinked hyaluronic acid-based dermal fillers.
    Falcone SJ; Doerfler AM; Berg RA
    Dermatol Surg; 2007 Dec; 33 Suppl 2():S136-43; discussion S143. PubMed ID: 18086051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembled supramolecular gels of reverse poloxamers and cyclodextrins.
    Larrañeta E; Isasi JR
    Langmuir; 2012 Aug; 28(34):12457-62. PubMed ID: 22823574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt effects on the air/solution interfacial properties of PEO-containing copolymers: equilibrium, adsorption kinetics and surface rheological behavior.
    Llamas S; Mendoza AJ; Guzmán E; Ortega F; Rubio RG
    J Colloid Interface Sci; 2013 Jun; 400():49-58. PubMed ID: 23582902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface grafting thermoresponsive PEO-PPO-PEO chains.
    Malal R; Malal M; Cohn D
    J Tissue Eng Regen Med; 2011 May; 5(5):394-401. PubMed ID: 20936602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A surface plasmon resonance study of albumin adsorption to PEO-PPO-PEO triblock copolymers.
    Green RJ; Davies MC; Roberts CJ; Tendler SJ
    J Biomed Mater Res; 1998 Nov; 42(2):165-71. PubMed ID: 9773812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoresponsive gelling behavior of concentrated alumina suspensions containing poly(acrylic acid) and PEO-PPO-PEO copolymer.
    Kondo A; Xu H; Abe H; Naito M
    J Colloid Interface Sci; 2012 May; 373(1):20-6. PubMed ID: 22014422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of Curcumin with PEO-PPO-PEO block copolymers: a molecular dynamics study.
    Samanta S; Roccatano D
    J Phys Chem B; 2013 Mar; 117(11):3250-7. PubMed ID: 23441964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.