These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 12713231)
41. Singlet Oxygen Quantum Yield Determination Using Chemical Acceptors. Bresolí-Obach R; Torra J; Zanocco RP; Zanocco AL; Nonell S Methods Mol Biol; 2021; 2202():165-188. PubMed ID: 32857355 [TBL] [Abstract][Full Text] [Related]
42. Reactive Oxygen Species-mediated Degradation of Antidiabetic Compounds: Cytotoxic Implications of Their Photodegradation Products. Challier C; Laurella S; Allegretti P; Sabini C; Sabini L; García NA; Biasutti A; Criado S Photochem Photobiol; 2018 Nov; 94(6):1151-1158. PubMed ID: 30066952 [TBL] [Abstract][Full Text] [Related]
43. Electric magnetic resonance and spectrophotometry evidence on the photodynamic activity of a new perylenequinonoid pigment. He YY; An JY; Jiang LJ J Photochem Photobiol B; 1999 Jun; 50(2-3):166-73. PubMed ID: 10577050 [TBL] [Abstract][Full Text] [Related]
44. Supramolecular cationic tetraruthenated porphyrin and light-induced decomposition of 2'-deoxyguanosine predominantly via a singlet oxygen-mediated mechanism. Ravanat JL; Cadet J; Araki K; Toma HE; Medeiros MH; Mascio PD Photochem Photobiol; 1998 Nov; 68(5):698-702. PubMed ID: 9825700 [TBL] [Abstract][Full Text] [Related]
45. A study of acridine and acridinium-substituted bis(terpyridine)zinc(II) and ruthenium(II) complexes as photosensitizers for O2 (1Δg) generation. Eberhard J; Peuntinger K; Rath S; Neumann B; Stammler HG; Guldi DM; Mattay J Photochem Photobiol Sci; 2014 Feb; 13(2):380-96. PubMed ID: 24424583 [TBL] [Abstract][Full Text] [Related]
46. Role of sulfide radical cations in electron transfer promoted molecular oxygenations at sulfur. Clennan EL; Liao C J Am Chem Soc; 2008 Mar; 130(12):4057-68. PubMed ID: 18307349 [TBL] [Abstract][Full Text] [Related]
47. Mechanism of quenching by oxygen of the excited states of ruthenium(II) complexes in aqueous media. Solvent isotope effect and photosensitized generation of singlet oxygen, O2(1Deltag), by [Ru(diimine)(CN)4]2- complex ions. Abdel-Shafi AA; Ward MD; Schmidt R Dalton Trans; 2007 Jun; (24):2517-27. PubMed ID: 17563787 [TBL] [Abstract][Full Text] [Related]
48. Reactive Oxygen Species Mediated Activation of a Dormant Singlet Oxygen Photosensitizer: From Autocatalytic Singlet Oxygen Amplification to Chemicontrolled Photodynamic Therapy. Durantini AM; Greene LE; Lincoln R; Martínez SR; Cosa G J Am Chem Soc; 2016 Feb; 138(4):1215-25. PubMed ID: 26789198 [TBL] [Abstract][Full Text] [Related]
49. Molecular tuning of phenylene-vinylene derivatives for two-photon photosensitized singlet oxygen production. Nielsen CB; Arnbjerg J; Johnsen M; Jorgensen M; Ogilby PR J Org Chem; 2009 Dec; 74(23):9094-104. PubMed ID: 19904908 [TBL] [Abstract][Full Text] [Related]
50. Time-resolved EPR study of singlet oxygen in the gas phase. Ruzzi M; Sartori E; Moscatelli A; Khudyakov IV; Turro NJ J Phys Chem A; 2013 Jun; 117(25):5232-40. PubMed ID: 23768193 [TBL] [Abstract][Full Text] [Related]
51. Intracellular singlet oxygen photosensitizers: on the road to solving the problems of sensitizer degradation, bleaching and relocalization. da Silva EF; Pimenta FM; Pedersen BW; Blaikie FH; Bosio GN; Breitenbach T; Westberg M; Bregnhøj M; Etzerodt M; Arnaut LG; Ogilby PR Integr Biol (Camb); 2016 Feb; 8(2):177-93. PubMed ID: 26878203 [TBL] [Abstract][Full Text] [Related]
52. Singlet-oxygen-mediated cell death using spatially-localized two-photon excitation of an extracellular sensitizer. Pimenta FM; Jensen RL; Holmegaard L; Esipova TV; Westberg M; Breitenbach T; Ogilby PR J Phys Chem B; 2012 Aug; 116(34):10234-46. PubMed ID: 22857396 [TBL] [Abstract][Full Text] [Related]
53. Chemical modification of a tetrapyrrole-type photosensitizer: tuning application and photochemical action beyond the singlet oxygen channel. Riyad YM; Naumov S; Schastak S; Griebel J; Kahnt A; Häupl T; Neuhaus J; Abel B; Hermann R J Phys Chem B; 2014 Oct; 118(40):11646-58. PubMed ID: 25207950 [TBL] [Abstract][Full Text] [Related]
54. Metal bacteriochlorins which act as dual singlet oxygen and superoxide generators. Fukuzumi S; Ohkubo K; Zheng X; Chen Y; Pandey RK; Zhan R; Kadish KM J Phys Chem B; 2008 Mar; 112(9):2738-46. PubMed ID: 18254618 [TBL] [Abstract][Full Text] [Related]
55. Kinetics and yield of singlet oxygen photosensitized by hypericin in organic and biological media. Ehrenberg B; Anderson JL; Foote CS Photochem Photobiol; 1998 Aug; 68(2):135-40. PubMed ID: 9723207 [TBL] [Abstract][Full Text] [Related]
56. Azide quenching of singlet oxygen in suspensions of microenvironments of neutral and surface charged liposomes and micelles. Musbat L; Weitman H; Ehrenberg B Photochem Photobiol; 2013; 89(1):253-8. PubMed ID: 22827592 [TBL] [Abstract][Full Text] [Related]
57. Sensitized photooxidation of thyroidal hormones. Evidence for heavy atom effect on singlet molecular oxygen [O2(1Deltag)]-mediated photoreactions. Miskoski S; Soltermann AT; Molina PG; Günther G; Zanocco AL; García NA Photochem Photobiol; 2005; 81(2):325-32. PubMed ID: 15643926 [TBL] [Abstract][Full Text] [Related]
58. Role of aromatic amino acid tryptophan UVA-photoproducts in the determination of drug photosensitization mechanism: a comparison between methylene blue and naproxen. Catalfo A; Bracchitta G; De Guidi G Photochem Photobiol Sci; 2009 Oct; 8(10):1467-75. PubMed ID: 19789818 [TBL] [Abstract][Full Text] [Related]
59. Fiber-optic singlet oxygen [1O2 (1Delta(g))] generator device serving as a point selective sterilizer. Aebisher D; Zamadar M; Mahendran A; Ghosh G; McEntee C; Greer A Photochem Photobiol; 2010; 86(4):890-4. PubMed ID: 20497367 [TBL] [Abstract][Full Text] [Related]
60. Vancomycin-sensitized photooxidation in the presence of the natural pigment vitamin B Cacciari D; Reynoso E; Spesia MB; Criado S; Biasutti MA Redox Rep; 2017 Jul; 22(4):166-175. PubMed ID: 27082285 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]