These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 12713371)

  • 1. Regioselectivity for condensation reactions of quinonoid models of tryptophan tryptophylquinone: a density functional theory study.
    Zou JW; Liang JM; Yu CH
    J Org Chem; 2003 May; 68(9):3626-33. PubMed ID: 12713371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selectivity of purine alkylation by a quinone methide. Kinetic or thermodynamic control?
    Freccero M; Gandolfi R; Sarzi-Amadè M
    J Org Chem; 2003 Aug; 68(16):6411-23. PubMed ID: 12895079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transfer in quinoproteins.
    Davidson VL
    Arch Biochem Biophys; 2004 Aug; 428(1):32-40. PubMed ID: 15234267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quinoproteins: enzymes containing the quinonoid cofactor pyrroloquinoline quinone, topaquinone or tryptophan-tryptophan quinone.
    Duine JA
    Eur J Biochem; 1991 Sep; 200(2):271-84. PubMed ID: 1653700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic environment of the tryptophylquinone cofactor in methylamine dehydrogenase: evidence from resonance Raman spectroscopy of model compounds.
    Moënne-Loccoz P; Nakamura N; Itoh S; Fukuzumi S; Gorren AC; Duine JA; Sanders-Loehr J
    Biochemistry; 1996 Apr; 35(15):4713-20. PubMed ID: 8664261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA
    J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model studies of 6,7-indolequinone cofactors of quinoprotein amine dehydrogenases.
    Murakami Y; Yoshimoto N; Fujieda N; Ohkubo K; Hasegawa T; Kano K; Fukuzumi S; Itoh S
    J Org Chem; 2007 Apr; 72(9):3369-80. PubMed ID: 17388633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydride, hydrogen atom, proton, and electron transfer driving forces of various five-membered heterocyclic organic hydrides and their reaction intermediates in acetonitrile.
    Zhu XQ; Zhang MT; Yu A; Wang CH; Cheng JP
    J Am Chem Soc; 2008 Feb; 130(8):2501-16. PubMed ID: 18254624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton-bound dimers of nitrogen heterocyclic molecules: substituent effects on the structures and binding energies of homodimers of diazine, triazine, and fluoropyridine.
    Attah IK; Platt SP; Meot-Ner Mautner M; El-Shall MS; Aziz SG; Alyoubi AO
    J Chem Phys; 2014 Mar; 140(11):114313. PubMed ID: 24655186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and mechanism of tryptophylquinone enzymes.
    Davidson VL
    Bioorg Chem; 2005 Jun; 33(3):159-70. PubMed ID: 15888309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction mechanism of naphthyl radicals with molecular oxygen. 1. Theoretical study of the potential energy surface.
    Zhou CW; Kislov VV; Mebel AM
    J Phys Chem A; 2012 Feb; 116(6):1571-85. PubMed ID: 22239650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum chemical study of the thermal decomposition of o-quinone methide (6-methylene-2,4-cyclohexadien-1-one).
    Silva Gd; Bozzelli JW
    J Phys Chem A; 2007 Aug; 111(32):7987-94. PubMed ID: 17645323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a tryptophan tryptophylquinone aminosemiquinone intermediate in the physiologic reaction between methylamine dehydrogenase and amicyanin.
    Bishop GR; Brooks HB; Davidson VL
    Biochemistry; 1996 Jul; 35(27):8948-54. PubMed ID: 8688431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further insights into quinone cofactor biogenesis: probing the role of mauG in methylamine dehydrogenase tryptophan tryptophylquinone formation.
    Pearson AR; De La Mora-Rey T; Graichen ME; Wang Y; Jones LH; Marimanikkupam S; Agger SA; Grimsrud PA; Davidson VL; Wilmot CM
    Biochemistry; 2004 May; 43(18):5494-502. PubMed ID: 15122915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction pathways and free energy barriers for alkaline hydrolysis of insecticide 2-trimethylammonioethyl methylphosphonofluoridate and related organophosphorus compounds: electrostatic and steric effects.
    Xiong Y; Zhan CG
    J Org Chem; 2004 Nov; 69(24):8451-8. PubMed ID: 15549820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimers of and tautomerism between 2-pyrimidinethiol and 2(1H)-pyrimidinethione: a density functional theory (DFT) study.
    Freeman F; Po HN
    J Phys Chem A; 2006 Jun; 110(25):7904-12. PubMed ID: 16789779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide bond formation via glycine condensation in the gas phase.
    Van Dornshuld E; Vergenz RA; Tschumper GS
    J Phys Chem B; 2014 Jul; 118(29):8583-90. PubMed ID: 24992687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergism of catalysis and reaction center rehybridization in nucleophilic additions to cumulenes: the one-, two-, three-water hydrolyses of carbodiimide and methyleneimine.
    Lewis M; Glaser R
    Chemistry; 2002 Apr; 8(8):1934-44. PubMed ID: 12007104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction of phenols with the 2,2-diphenyl-1-picrylhydrazyl radical. Kinetics and DFT calculations applied to determine ArO-H bond dissociation enthalpies and reaction mechanism.
    Foti MC; Daquino C; Mackie ID; DiLabio GA; Ingold KU
    J Org Chem; 2008 Dec; 73(23):9270-82. PubMed ID: 18991378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cheletropic decomposition of cyclic nitrosoamines revisited: the nature of the transition states and a critical role of the ring strain.
    Shustov GV; Rauk A
    J Org Chem; 2000 Jun; 65(12):3612-9. PubMed ID: 10864743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.