BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12713953)

  • 21. Nucleoid condensation and cell division in Escherichia coli MX74T2 ts52 after inhibition of protein synthesis.
    Zusman DR; Carbonell A; Haga JY
    J Bacteriol; 1973 Sep; 115(3):1167-78. PubMed ID: 4580561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polymer-mediated compaction and internal dynamics of isolated Escherichia coli nucleoids.
    Cunha S; Woldringh CL; Odijk T
    J Struct Biol; 2001 Oct; 136(1):53-66. PubMed ID: 11858707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Partitioning, movement, and positioning of nucleoids in Mycoplasma capricolum.
    Seto S; Miyata M
    J Bacteriol; 1999 Oct; 181(19):6073-80. PubMed ID: 10498720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Macromolecular crowding can account for RNase-sensitive constraint of bacterial nucleoid structure.
    Foley PL; Wilson DB; Shuler ML
    Biochem Biophys Res Commun; 2010 Apr; 395(1):42-7. PubMed ID: 20346349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A limited loss of DNA compaction accompanying the release of cytoplasm from cells of Escherichia coli.
    Murphy LD; Zimmerman SB
    J Struct Biol; 2001 Jan; 133(1):75-86. PubMed ID: 11356066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth phase dependent changes in the structure and protein composition of nucleoid in Escherichia coli.
    Talukder A; Ishihama A
    Sci China Life Sci; 2015 Sep; 58(9):902-11. PubMed ID: 26208826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The spatial biology of transcription and translation in rapidly growing Escherichia coli.
    Bakshi S; Choi H; Weisshaar JC
    Front Microbiol; 2015; 6():636. PubMed ID: 26191045
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Image cytometric method for quantifying the relative amount of DNA in bacterial nucleoids using Escherichia coli.
    Vischer NO; Huls PG; Ghauharali RI; Brakenhoff GJ; Nanninga N; Woldringh CL
    J Microsc; 1999 Oct; 196(Pt 1):61-8. PubMed ID: 10540258
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unfolding of the bacterial nucleoid both in vivo and in vitro as a result of exposure to camphor.
    Harrington EW; Trun NJ
    J Bacteriol; 1997 Apr; 179(7):2435-9. PubMed ID: 9079934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis by isopycnic centrifugation of isolated nucleoids of Escherichia coli.
    Giorno R; Hecht RM; Pettijohn D
    Nucleic Acids Res; 1975 Sep; 2(9):1559-67. PubMed ID: 1101227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome.
    Hashimoto M; Ichimura T; Mizoguchi H; Tanaka K; Fujimitsu K; Keyamura K; Ote T; Yamakawa T; Yamazaki Y; Mori H; Katayama T; Kato J
    Mol Microbiol; 2005 Jan; 55(1):137-49. PubMed ID: 15612923
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Localizing cell division in spherical Escherichia coli by nucleoid occlusion.
    Zaritsky A; Woldringh CL
    FEMS Microbiol Lett; 2003 Sep; 226(2):209-14. PubMed ID: 14553913
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nucleoid partitioning and the division plane in Escherichia coli.
    Woldringh CL; Zaritsky A; Grover NB
    J Bacteriol; 1994 Oct; 176(19):6030-8. PubMed ID: 7523361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutual suppression of mukB and seqA phenotypes might arise from their opposing influences on the Escherichia coli nucleoid structure.
    Weitao T; Nordström K; Dasgupta S
    Mol Microbiol; 1999 Oct; 34(1):157-68. PubMed ID: 10540294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biophysical Properties of Escherichia coli Cytoplasm in Stationary Phase by Superresolution Fluorescence Microscopy.
    Zhu Y; Mustafi M; Weisshaar JC
    mBio; 2020 Jun; 11(3):. PubMed ID: 32546611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleoid structure and distribution in thermophilic Archaea.
    Popławski A; Bernander R
    J Bacteriol; 1997 Dec; 179(24):7625-30. PubMed ID: 9401018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chloramphenicol causes fusion of separated nucleoids in Escherichia coli K-12 cells and filaments.
    van Helvoort JM; Kool J; Woldringh CL
    J Bacteriol; 1996 Jul; 178(14):4289-93. PubMed ID: 8763959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome architecture studied by nanoscale imaging: analyses among bacterial phyla and their implication to eukaryotic genome folding.
    Takeyasu K; Kim J; Ohniwa RL; Kobori T; Inose Y; Morikawa K; Ohta T; Ishihama A; Yoshimura SH
    Cytogenet Genome Res; 2004; 107(1-2):38-48. PubMed ID: 15305055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial nucleoid structure probed by active drag and resistive pulse sensing.
    Thacker VV; Bromek K; Meijer B; Kotar J; Sclavi B; Lagomarsino MC; Keyser UF; Cicuta P
    Integr Biol (Camb); 2014 Feb; 6(2):184-91. PubMed ID: 24321999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ analysis of the higher-order genome structure in a single Escherichia coli cell.
    Shindo E; Kubo K; Ohniwa RL; Takeyasu K; Yoshikawa K
    J Biotechnol; 2008 Jan; 133(2):172-6. PubMed ID: 17889955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.